DOI QR코드

DOI QR Code

Investigation of the cytotoxicity of thermoplastic denture base resins

  • Lee, Jung-Hwan (Institute of Tissue Regeneration Engineering (ITREN), Dankook University) ;
  • Jun, Soo-Kyung (Institute of Tissue Regeneration Engineering (ITREN), Dankook University) ;
  • Kim, Si-Chul (Department of Biomaterials Science, College of Dentistry, Dankook University) ;
  • Okubo, Chikahiro (Department of Removable Prosthodontics, Tsurumi University School of Dental Medicine) ;
  • Lee, Hae-Hyoung (Institute of Tissue Regeneration Engineering (ITREN), Dankook University)
  • Received : 2016.11.05
  • Accepted : 2017.08.20
  • Published : 2017.12.29

Abstract

PURPOSE. The purpose of this study was to investigate the in vitro cytotoxicity of thermoplastic denture base resins and to identify the possible adverse effects of these resins on oral keratinocytes in response to hot water/ food intake. MATERIALS AND METHODS. Six dental thermoplastic resin materials were evaluated: three polyamide materials (Smile tone, ST; Valplast, VP; and Luciton FRS, LF), two acrylic materials (Acrytone, AT; and Acryshot, AS), and one polypropylene resin material (Unigum, UG). One heat-polymerized acrylic resin (Vertex RS, RS) was chosen for comparison. After obtaining extracts from specimens of the denture resin materials (${\phi}=10$ mm and d=2 mm) under different extraction conditions ($37^{\circ}C$ for 24 hours, $70^{\circ}C$ for 24 hours, and $121^{\circ}C$ for 1 hour), the extracts (50%) or serial dilutions (25%, 12.5%, and 6.25%) in distilled water were co-cultured for 24 hours with immortalized human oral keratinocytes (IHOKs) or mouse fibroblasts (L929s) for the cytotoxicity assay described in ISO 10993. RESULTS. Greater than 70% viability was detected under all test conditions. Significantly lower IHOK and L929 viability was detected in the 50% extract from the VP ($70^{\circ}C$) and AT ($121^{\circ}C$) samples (P<.05), but only L929 showed reduced viability in the 50% and 25% extract from LF ($37^{\circ}C$) (P<.05). CONCLUSION. Extracts obtained from six materials under different extraction conditions ($37^{\circ}C$, $70^{\circ}C$, and $121^{\circ}C$) did not exhibit severe cytotoxicity (less than 70% viability), although their potential risk to oral mucosa at high temperatures should not be ignored.

Keywords

References

  1. Sasaki H, Hamanaka I, Takahashi Y, Kawaguchi T. Effect of reinforcement on the flexural properties of injection-molded thermoplastic denture base resins. J Prosthodont 2015 Dec 18.
  2. Fueki K, Ohkubo C, Yatabe M, Arakawa I, Arita M, Ino S, Kanamori T, Kawai Y, Kawara M, Komiyama O, Suzuki T, Nagata K, Hosoki M, Masumi S, Yamauchi M, Aita H, Ono T, Kondo H, Tamaki K, Matsuka Y, Tsukasaki H, Fujisawa M, Baba K, Koyano K, Yatani H. Clinical application of removable partial dentures using thermoplastic resin. Part II: Material properties and clinical features of non-metal clasp dentures. J Prosthodont Res 2014;58:71-84. https://doi.org/10.1016/j.jpor.2014.03.002
  3. Wada J, Fueki K, Yatabe M, Takahashi H, Wakabayashi N. A comparison of the fitting accuracy of thermoplastic denture base resins used in non-metal clasp dentures to a conventional heat-cured acrylic resin. Acta Odontol Scand 2015;73:33-7. https://doi.org/10.3109/00016357.2014.946966
  4. Fueki K, Ohkubo C, Yatabe M, Arakawa I, Arita M, Ino S, Kanamori T, Kawai Y, Kawara M, Komiyama O, Suzuki T, Nagata K, Hosoki M, Masumi S, Yamauchi M, Aita H, Ono T, Kondo H, Tamaki K, Matsuka Y, Tsukasaki H, Fujisawa M, Baba K, Koyano K, Yatani H. Clinical application of removable partial dentures using thermoplastic resin-part I: definition and indication of non-metal clasp dentures. J Prosthodont Res 2014;58:3-10. https://doi.org/10.1016/j.jpor.2013.12.002
  5. Ucar Y, Akova T, Aysan I. Mechanical properties of polyamide versus different PMMA denture base materials. J Prosthodont 2012;21:173-6. https://doi.org/10.1111/j.1532-849X.2011.00804.x
  6. Basavaraj E, Ramaraj B, Lee JH. Polyamide 6/carbon black/molybdenum disulphide composites: Friction, wear and morphological characteristics. Mater Chem Phys 2013;138:658-65. https://doi.org/10.1016/j.matchemphys.2012.12.035
  7. Xu X, He Z, Lu S, Guo D, Yu J. Enhanced thermal and mechanical properties of lignin/polypropylene wood-plastic composite by using flexible segment-containing reactive compatibilizer. Macromol Res 2014;22:1084-9. https://doi.org/10.1007/s13233-014-2161-3
  8. Kim JH, Choe HC, Son MK. Evaluation of adhesion of reline resins to the thermoplastic denture base resin for nonmetal clasp denture. Dent Mater J 2014;33:32-8. https://doi.org/10.4012/dmj.2013-121
  9. Hamanaka I, Takahashi Y, Shimizu H. Mechanical properties of injection-molded thermoplastic denture base resins. Acta Odontol Scand 2011;69:75-9. https://doi.org/10.3109/00016357.2010.517557
  10. Takabayashi Y. Characteristics of denture thermoplastic resins for non-metal clasp dentures. Dent Mater J 2010;29:353-61. https://doi.org/10.4012/dmj.2009-114
  11. Iwata Y. Assessment of clasp design and flexural properties of acrylic denture base materials for use in non-metal clasp dentures. J Prosthodont Res 2016;60:114-22. https://doi.org/10.1016/j.jpor.2015.11.003
  12. Jang DE, Lee JY, Jang HS, Lee JJ, Son MK. Color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for non metal clasp denture. J Adv Prosthodont 2015;7:278-87. https://doi.org/10.4047/jap.2015.7.4.278
  13. Uzun IH, Tatar A, Hacimuftuoglu A, Saruhan F, Bayindir F. In vitro evaluation of long-term cytotoxic response of injection-molded polyamide and polymethyle metacrylate denture base materials on primary fibroblast cell culture. Acta Odontol Scand 2013;71:1267-72. https://doi.org/10.3109/00016357.2012.757648
  14. Sahin O, Ozdemir AK, Turgut M, Boztug A, Sumer Z. Investigation of flexural strength and cytotoxicity of acrylic resin copolymers by using different polymerization methods. J Adv Prosthodont 2015;7:98-107. https://doi.org/10.4047/jap.2015.7.2.98
  15. ISO 10993-12. Biological evaluation of medical devices-part 12: sample preparation and reference materials. International Organization for Standardization; 3rd ed. Geneva, Switzerland; 2012.
  16. ISO 7405. Dentistry-evaluation of biocompatibility of medical devices used in dentistry. International Organization for Standardization; 3rd ed. Geneva, Switzerland; 2008.
  17. Black J, Hastings G. Handbook of biomaterial properties. New York, NY; Springer Science & Business Media; 2013.
  18. ISO 10993-5. Biological evaluation of medical devices-part 5: tests for in vitro cytotoxicity. International Organization for Standardization; 3rd ed. Geneva, Switzerland; 2009.
  19. Lee JH, Kwon JS, Moon SK, Uhm SH, Choi BH, Joo UH, Kim KM, Kim KN. Titanium-silver alloy miniplates for mandibular fixation: In vitro and in vivo study. J Oral Maxillofac Surg 2016;74:1622.e1-1622.e12. https://doi.org/10.1016/j.joms.2016.04.010
  20. Oda D, Bigler L, Lee P, Blanton R. HPV immortalization of human oral epithelial cells: a model for carcinogenesis. Exp Cell Res 1996;226:164-9. https://doi.org/10.1006/excr.1996.0215
  21. Lee JH, Lee HH, Kim KN, Kim KM. Cytotoxicity and antiinflammatory effects of zinc ions and eugenol during setting of ZOE in immortalized human oral keratinocytes grown as three-dimensional spheroids. Dent Mater 2016;32:e93-104.
  22. Lee JH, Lee HH, Kim HW, Yu JW, Kim KN, Kim KM. Immunomodulatory/anti-inflammatory effect of ZOE-based dental materials. Dent Mater 2017;33:e1-e12.
  23. Malkoc MA, DemIr N, Sengun A, Bozkurt SB, Hakki SS. Cytotoxicity of temporary cements on bovine dental pulp-derived cells (bDPCs) using realtime cell analysis. J Adv Prosthodont 2015;7:21-6. https://doi.org/10.4047/jap.2015.7.1.21
  24. Nishi C, Nakajima N, Ikada Y. In vitro evaluation of cytotoxicity of diepoxy compounds used for biomaterial modification. J Biomed Mater Res 1995;29:829-34. https://doi.org/10.1002/jbm.820290707
  25. Liu X, Xi T, Zheng Y. Influence of the extraction parameters on the cytotoxicity test results of Mg materials. Progress Natural Sci: Mater Int 2014;24:507-15. https://doi.org/10.1016/j.pnsc.2014.09.005
  26. dos Santos RL, Pithon MM, Martins FO, Romanos MT, Ruellas AC. Evaluation of cytotoxicity and degree of conversion of glass ionomer cements reinforced with resin. Eur J Orthod 2012;34:362-6. https://doi.org/10.1093/ejo/cjr009
  27. Miletic I, Devcic N, Anic I, Borcic J, Karlovic Z, Osmak M. The cytotoxicity of RoekoSeal and AH plus compared during different setting periods. J Endod 2005;31:307-9. https://doi.org/10.1097/01.don.0000140570.95688.ee
  28. Cavalcanti BN, Rode SM, Marques MM. Cytotoxicity of substances leached or dissolved from pulp capping materials. Int Endod J 2005;38:505-9. https://doi.org/10.1111/j.1365-2591.2005.00967.x
  29. Kwon JS, Lee SB, Kim CK, Kim KN. Modified cytotoxicity evaluation of elastomeric impression materials while polymerizing with reduced exposure time. Acta Odontol Scand 2012;70:597-602. https://doi.org/10.3109/00016357.2011.641127
  30. Baek HS, Yoo JY, Rah DK, Han DW, Lee DH, Kwon OH, Park JC. Evaluation of the extraction method for the cytotoxicity testing of latex gloves. Yonsei Med J 2005;46:579-83. https://doi.org/10.3349/ymj.2005.46.4.579
  31. Faria AC, Rodrigues RC, Antunes RP, de Mattos Mda G, Rosa AL, Ribeiro RF. Effect of temperature variation on the cytotoxicity of cast dental alloys and commercially pure titanium. J Appl Oral Sci 2009;17:421-6. https://doi.org/10.1590/S1678-77572009000500013
  32. Das GK, Chan PP, Teo A, Loo JS, Anderson JM, Tan TT. In vitro cytotoxicity evaluation of biomedical nanoparticles and their extracts. J Biomed Mater Res A 2010;93:337-46.
  33. Goiato MC, Freitas E, dos Santos D, de Medeiros R, Sonego M. Acrylic resin cytotoxicity for denture base-literature review. Adv Clin Exp Med 2015;24:679-86. https://doi.org/10.17219/acem/33009
  34. Hensten-Pettersen A, Wictorin L. The cytotoxic effect of denture base polymers. Acta Odontol Scand 1981;39:101-6. https://doi.org/10.3109/00016358109162267
  35. Wilkes CE, Summers JW, Daniels CA, Berard MT. PVC handbook. Cincinnati, OH; Hanser Publications; 2005.
  36. Vihola H, Laukkanen A, Valtola L, Tenhu H, Hirvonen J. Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 2005;26:3055-64. https://doi.org/10.1016/j.biomaterials.2004.09.008
  37. Akin H, Tugut F, Polat ZA. In vitro comparison of the cytotoxicity and water sorption of two different denture base systems. J Prosthodont 2015;24:152-5. https://doi.org/10.1111/jopr.12162
  38. Browne RM. The in vitro assessment of the cytotoxicity of dental materials-does it have a role? Int Endod J 1988;21:50-8.
  39. O'Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 2000;267:5421-6. https://doi.org/10.1046/j.1432-1327.2000.01606.x
  40. Coulter JA, Jain S, Butterworth KT, Taggart LE, Dickson GR, McMahon SJ, Hyland WB, Muir MF, Trainor C, Hounsell AR, O'Sullivan JM, Schettino G, Currell FJ, Hirst DG, Prise KM. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles. Int J Nanomedicine 2012;7:2673-85.
  41. Borenfreund E, Puerner JA. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett 1985;24:119-24. https://doi.org/10.1016/0378-4274(85)90046-3
  42. Lee JH, Seo SH, Lee SB, Om JY, Kim KM, Kim KN. Cytotoxicity and terminal differentiation of human oral keratinocyte by indium ions from a silver-palladium-gold-indium dental alloy. Dent Mater 2015;31:123-33. https://doi.org/10.1016/j.dental.2014.11.006
  43. Lee TC, Ho IC. Differential cytotoxic effects of arsenic on human and animal cells. Environ Health Perspect 1994;102:101-5. https://doi.org/10.1289/ehp.94102s10101
  44. Lovschall H, Eiskjaer M, Arenholt-Bindslev D. Formaldehyde cytotoxicity in three human cell types assessed in three different assays. Toxicol In Vitro 2002;16:63-9. https://doi.org/10.1016/S0887-2333(01)00093-5
  45. Schweikl H, Schmalz G. Toxicity parameters for cytotoxicity testing of dental materials in two different mammalian cell lines. Eur J Oral Sci 1996;104:292-9. https://doi.org/10.1111/j.1600-0722.1996.tb00080.x
  46. Kwon JS, Illeperuma RP, Kim J, Kim KM, Kim KN. Cytotoxicity evaluation of zinc oxide-eugenol and non-eugenol cements using different fibroblast cell lines. Acta Odontol Scand 2014;72:64-70. https://doi.org/10.3109/00016357.2013.798871
  47. Chen F, Wu T, Cheng X. Cytotoxic effects of denture adhesives on primary human oral keratinocytes, fibroblasts and permanent L929 cell lines. Gerodontology 2014;31:4-10. https://doi.org/10.1111/j.1741-2358.2012.00681.x
  48. Wataha JC, Rueggeberg FA, Lapp CA, Lewis JB, Lockwood PE, Ergle JW, Mettenburg DJ. In vitro cytotoxicity of resincontaining restorative materials after aging in artificial saliva. Clin Oral Investig 1999;3:144-9. https://doi.org/10.1007/s007840050093

Cited by

  1. Depth-Dependent Cellular Response from Dental Bulk-Fill Resins in Human Dental Pulp Stem Cells vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/1251536
  2. Biological and Chemo-Physical Features of Denture Resins vol.13, pp.15, 2017, https://doi.org/10.3390/ma13153350