DOI QR코드

DOI QR Code

Fracture load and survival of anatomically representative monolithic lithium disilicate crowns with reduced tooth preparation and ceramic thickness

  • Received : 2017.02.19
  • Accepted : 2017.07.04
  • Published : 2017.12.29

Abstract

PURPOSE. To investigate the effect of reducing tooth preparation and ceramic thickness on fracture resistance of lithium disilicate crowns. MATERIALS AND METHODS. Specimen preparation included a standard complete crown preparation of a typodont mandibular left first molar with an occlusal reduction of 2 mm, proximal/axial wall reduction of 1.5 mm, and 1.0 mm deep chamfer (Group A). Another typodont mandibular first molar was prepared with less tooth reduction: 1 mm occlusal and proximal/axial wall reduction and 0.8 mm chamfer (Group B). Twenty crowns were milled from each preparation corresponding to control group (n=5) and conditioned group of simultaneous thermal and mechanical loading in aqueous environment (n=15). All crowns were then loaded until fracture to determine the fracture load. RESULTS. The mean (SD) fracture load values (in Newton) for Group A were 2340 (83) and 2149 (649), and for Group B, 1752 (134) and 1054 (249) without and with fatigue, respectively. Reducing tooth preparation thickness significantly decreased fracture load of the crowns at baseline and after fatigue application. After fatigue, the mean fracture load statistically significantly decreased (P<.001) in Group B; however, it was not affected (P>.05) in Group A. CONCLUSION. Reducing the amount of tooth preparation by 0.5 mm on the occlusal and proximal/axial wall with a 0.8 mm chamfer significantly reduced fracture load of the restoration. Tooth reduction required for lithium disilicate crowns is a crucial factor for a long-term successful application of this all-ceramic system.

Keywords

References

  1. Edelhoff D, Sorensen JA. Tooth structure removal associated with various preparation designs for posterior teeth. Int J Periodontics Restorative Dent 2002;22:241-9.
  2. Seydler B, Rues S, Muller D, Schmitter M. In vitro fracture load of monolithic lithium disilicate ceramic molar crowns with different wall thicknesses. Clin Oral Investig 2014;18:1165-71. https://doi.org/10.1007/s00784-013-1062-8
  3. Shahrbaf S, van Noort R, Mirzakouchaki B, Ghassemieh E, Martin N. Fracture strength of machined ceramic crowns as a function of tooth preparation design and the elastic modulus of the cement. Dent Mater 2014;30:234-41. https://doi.org/10.1016/j.dental.2013.11.010
  4. Rekow ED, Silva NR, Coelho PG, Zhang Y, Guess P, Thompson VP. Performance of dental ceramics: challenges for improvements. J Dent Res 2011;90:937-52. https://doi.org/10.1177/0022034510391795
  5. Soares CJ, Martins LR, Fonseca RB, Correr-Sobrinho L, Fernandes Neto AJ. Influence of cavity preparation design on fracture resistance of posterior Leucite-reinforced ceramic restorations. J Prosthet Dent 2006;95:421-9. https://doi.org/10.1016/j.prosdent.2006.03.022
  6. Steiner M, Mitsias ME, Ludwig K, Kern M. In vitro evaluation of a mechanical testing chewing simulator. Dent Mater 2009;25:494-9. https://doi.org/10.1016/j.dental.2008.09.010
  7. Sibbald B, Roland M. Understanding controlled trials. Why are randomised controlled trials important? BMJ 1998;316:201. https://doi.org/10.1136/bmj.316.7126.201
  8. Wiskott HW, Nicholls JI, Belser UC. Stress fatigue: basic principles and prosthodontic implications. Int J Prosthodont 1995;8:105-16.
  9. Naumann M, Metzdorf G, Fokkinga W, Watzke R, Sterzenbach G, Bayne S, Rosentritt M. Influence of test parameters on in vitro fracture resistance of post-endodontic restorations: a structured review. J Oral Rehabil 2009;36:299-312. https://doi.org/10.1111/j.1365-2842.2009.01940.x
  10. Kelly JR. Clinically relevant approach to failure testing of allceramic restorations. J Prosthet Dent 1999;81:652-61. https://doi.org/10.1016/S0022-3913(99)70103-4
  11. Attia A, Kern M. Influence of cyclic loading and luting agents on the fracture load of two all-ceramic crown systems. J Prosthet Dent 2004;92:551-6. https://doi.org/10.1016/j.prosdent.2004.09.002
  12. Clausen JO, Abou Tara M, Kern M. Dynamic fatigue and fracture resistance of non-retentive all-ceramic full-coverage molar restorations. Influence of ceramic material and preparation design. Dent Mater 2010;26:533-8. https://doi.org/10.1016/j.dental.2010.01.011
  13. Albrecht T, Kirsten A, Kappert HF, Fischer H. Fracture load of different crown systems on zirconia implant abutments. Dent Mater 2011;27:298-303. https://doi.org/10.1016/j.dental.2010.11.005
  14. Mitsias M, Koutayas SO, Wolfart S, Kern M. Influence of zirconia abutment preparation on the fracture strength of single implant lithium disilicate crowns after chewing simulation. Clin Oral Implants Res 2014;25:675-82.
  15. Zhao K, Wei YR, Pan Y, Zhang XP, Swain MV, Guess PC. Influence of veneer and cyclic loading on failure behavior of lithium disilicate glass-ceramic molar crowns. Dent Mater 2014;30:164-71. https://doi.org/10.1016/j.dental.2013.11.001
  16. Chitmongkolsuk S, Heydecke G, Stappert C, Strub JR. Fracture strength of all-ceramic lithium disilicate and porcelain-fused-to-metal bridges for molar replacement after dynamic loading. Eur J Prosthodont Restor Dent 2002;10:15-22.
  17. Schultheis S, Strub JR, Gerds TA, Guess PC. Monolithic and bi-layer CAD/CAM lithium-disilicate versus metal-ceramic fixed dental prostheses: comparison of fracture loads and failure modes after fatigue. Clin Oral Investig 2013;17:1407-13. https://doi.org/10.1007/s00784-012-0830-1
  18. Kheradmandan S, Koutayas SO, Bernhard M, Strub JR. Fracture strength of four different types of anterior 3-unit bridges after thermo-mechanical fatigue in the dual-axis chewing simulator. J Oral Rehabil 2001;28:361-9. https://doi.org/10.1046/j.1365-2842.2001.00742.x
  19. Rosentritt M, Siavikis G, Behr M, Kolbeck C, Handel G. Approach for valuating the significance of laboratory simulation. J Dent 2008;36:1048-53. https://doi.org/10.1016/j.jdent.2008.09.001
  20. Pieger S, Salman A, Bidra AS. Clinical outcomes of lithium disilicate single crowns and partial fixed dental prostheses: a systematic review. J Prosthet Dent 2014;112:22-30. https://doi.org/10.1016/j.prosdent.2014.01.005
  21. Rekow ED, Harsono M, Janal M, Thompson VP, Zhang G. Factorial analysis of variables influencing stress in all-ceramic crowns. Dent Mater 2006;22:125-32. https://doi.org/10.1016/j.dental.2005.04.010
  22. Guess PC, Zavanelli RA, Silva NR, Bonfante EA, Coelho PG, Thompson VP. Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns: comparison of failure modes and reliability after fatigue. Int J Prosthodont 2010;23:434-42.
  23. Reich S, Schierz O. Chair-side generated posterior lithium disilicate crowns after 4 years. Clin Oral Investig 2013;17:1765-72. https://doi.org/10.1007/s00784-012-0868-0
  24. Kern M, Sasse M, Wolfart S. Ten-year outcome of three-unit fixed dental prostheses made from monolithic lithium disilicate ceramic. J Am Dent Assoc 2012;143:234-40. https://doi.org/10.14219/jada.archive.2012.0147
  25. Fasbinder DJ, Dennison JB, Heys D, Neiva G. A clinical evaluation of chairside lithium disilicate CAD/CAM crowns: a two-year report. J Am Dent Assoc 2010;141:10S-4S. https://doi.org/10.14219/jada.archive.2010.0355
  26. Valenti M, Valenti A. Retrospective survival analysis of 261 lithium disilicate crowns in a private general practice. Quintessence Int 2009;40:573-9.
  27. Suputtamongkol K, Anusavice KJ, Suchatlampong C, Sithiamnuai P, Tulapornchai C. Clinical performance and wear characteristics of veneered lithia-disilicate-based ceramic crowns. Dent Mater 2008;24:667-73. https://doi.org/10.1016/j.dental.2007.06.033
  28. Altamimi AM, Tripodakis AP, Eliades G, Hirayama H. Comparison of fracture resistance and fracture characterization of bilayered zirconia/fluorapatite and monolithic lithium disilicate all ceramic crowns. Int J Esthet Dent 2014;9:98-110.
  29. Carvalho AO, Bruzi G, Giannini M, Magne P. Fatigue resistance of CAD/CAM complete crowns with a simplified cementation process. J Prosthet Dent 2014;111:310-7. https://doi.org/10.1016/j.prosdent.2013.09.020
  30. Ferrario VF, Sforza C, Serrao G, Dellavia C, Tartaglia GM. Single tooth bite forces in healthy young adults. J Oral Rehabil 2004;31:18-22. https://doi.org/10.1046/j.0305-182X.2003.01179.x
  31. Tortopidis D, Lyons MF, Baxendale RH, Gilmour WH. The variability of bite force measurement between sessions, in different positions within the dental arch. J Oral Rehabil 1998;25:681-6. https://doi.org/10.1046/j.1365-2842.1998.00293.x
  32. Kohyama K, Mioche A, Martin JF. Chewing patterns of various texture foods studied by electromyography in young and elderly populations. J Texture Stud 2007; 33:269-83.
  33. Kohyama K, Mioche L. Chewing behavior observed at different stages of mastication for six foods, studied by electromyography and jaw kinematics in young and elderly subjects. J Texture Stud 2004;35:395-414. https://doi.org/10.1111/j.1745-4603.2004.tb00603.x
  34. Bates JF, Stafford GD, Harrison A. Masticatory function - a review of the literature. III. Masticatory performance and efficiency. J Oral Rehabil 1976;3:57-67. https://doi.org/10.1111/j.1365-2842.1976.tb00929.x
  35. Kohyama K, Hatakeyama E, Sasaki T, Dan H, Azuma T, Karita K. Effects of sample hardness on human chewing force: a model study using silicone rubber. Arch Oral Biol 2004;49:805-16. https://doi.org/10.1016/j.archoralbio.2004.04.006
  36. Schindler HJ, Stengel E, Spiess WE. Feedback control during mastication of solid food textures-a clinical-experimental study. J Prosthet Dent 1998;80:330-6. https://doi.org/10.1016/S0022-3913(98)70134-9
  37. De Boever JA, McCall WD Jr, Holden S, Ash MM Jr. Functional occlusal forces: an investigation by telemetry. J Prosthet Dent 1978;40:326-33. https://doi.org/10.1016/0022-3913(78)90042-2
  38. Kim B, Zhang Y, Pines M, Thompson VP. Fracture of porcelain-veneered structures in fatigue. J Dent Res 2007;86:142-6. https://doi.org/10.1177/154405910708600207
  39. Kim JW, Kim JH, Thompson VP, Zhang Y. Sliding contact fatigue damage in layered ceramic structures. J Dent Res 2007;86:1046-50. https://doi.org/10.1177/154405910708601105
  40. Heintze SD, Cavalleri A, Zellweger G, Buchler A, Zappini G. Fracture frequency of all-ceramic crowns during dynamic loading in a chewing simulator using different loading and luting protocols. Dent Mater 2008;24:1352-61. https://doi.org/10.1016/j.dental.2008.02.019
  41. Dhima M, Carr AB, Salinas TJ, Lohse C, Berglund L, Nan KA. Evaluation of fracture resistance in aqueous environment under dynamic loading of lithium disilicate restorative systems for posterior applications. Part 2. J Prosthodont 2014;23:353-7. https://doi.org/10.1111/jopr.12124
  42. Johansson C, Kmet G, Rivera J, Larsson C, Vult Von Steyern P. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns. Acta Odontol Scand 2014;72:145-53. https://doi.org/10.3109/00016357.2013.822098
  43. Rosentritt M, Behr M, Gebhard R, Handel G. Influence of stress simulation parameters on the fracture strength of allceramic fixed-partial dentures. Dent Mater 2006;22:176-82. https://doi.org/10.1016/j.dental.2005.04.024
  44. Wakabayashi N, Anusavice KJ. Crack initiation modes in bilayered alumina/porcelain disks as a function of core/veneer thickness ratio and supporting substrate stiffness. J Dent Res 2000;79:1398-404. https://doi.org/10.1177/00220345000790060801
  45. Campbell SD. A comparative strength study of metal ceramic and all-ceramic esthetic materials: modulus of rupture. J Prosthet Dent 1989;62:476-9. https://doi.org/10.1016/0022-3913(89)90184-4
  46. Mahmood DJ, Linderoth EH, Vult Von Steyern P. The influence of support properties and complexity on fracture strength and fracture mode of all-ceramic fixed dental prostheses. Acta Odontol Scand 2011;69:229-37. https://doi.org/10.3109/00016357.2010.549508
  47. Scherrer SS, de Rijk WG. The fracture resistance of all-ceramic crowns on supporting structures with different elastic moduli. Int J Prosthodont 1993;6:462-7.
  48. Yucel MT, Yondem I, Aykent F, Eraslan O. Influence of the supporting die structures on the fracture strength of all-ceramic materials. Clin Oral Investig 2012;16:1105-10. https://doi.org/10.1007/s00784-011-0606-z

Cited by

  1. General principles for complete crown preparations vol.9, pp.4, 2018, https://doi.org/10.15406/jdhodt.2018.09.00404
  2. Three-dimensional analysis of the relationship between the structure of maxillary central incisor and the preparation of dental all-ceramic vol.13, pp.12, 2018, https://doi.org/10.1371/journal.pone.0209791
  3. Evaluation of zirconia and zirconia‐reinforced glass ceramic systems fabricated for minimal invasive preparations using a novel standardization method vol.32, pp.6, 2020, https://doi.org/10.1111/jerd.12570
  4. Longevity of lithium disilicate indirect restorations in posterior teeth prepared by undergraduate students: A retrospective study up to 8.5 years vol.105, pp.None, 2021, https://doi.org/10.1016/j.jdent.2020.103569
  5. In Vitro Fatigue and Fracture Load of Monolithic Ceramic Crowns Supported by Hybrid Abutment vol.15, pp.1, 2017, https://doi.org/10.2174/1874210602115010664
  6. Does Preheating Resin Cements Affect Fracture Resistance of Lithium Disilicate and Zirconia Restorations? vol.14, pp.19, 2021, https://doi.org/10.3390/ma14195603
  7. Clinical Evaluation of Reduced-Thickness Monolithic Lithium-Disilicate Crowns: One-Year Follow-Up Results vol.9, pp.12, 2017, https://doi.org/10.3390/pr9122119