무인체 탑재용 이종영상 스캐닝을 통한 딥러닝 기반의 구조물 균열 평가 기술

Deep Learning-Based Structural Crack Evaluation Technique Through UAV-Mounted Hybrid Image Scanning

  • 안윤규 (세종대학교 건축공학과) ;
  • 장근영 (세종대학교 건축공학과)
  • An, Yun-Kyu (Department of Architectural Engineering, Sejong University) ;
  • Jang, Keun-Young (Department of Architectural Engineering, Sejong University)
  • 발행 : 2017.12.15

초록

키워드

참고문헌

  1. Korea Facilities Maintenance Association (www.fma.or.kr), 2017.
  2. Li, B., Ushiroda, K., Yang, L., Song, Q., & Xiao, J., Wall-climbing Robot for Nondestructive Evaluation using Impact-echo and Metric Learning SVM, International Journal of Intelligent Robotics and Applications, Vol.1, 2017.
  3. Kim, J., Kim, S., Park, J., & Nam, J., Development of Crack Detection System with Unmanned Aerial Vehicles and Digital Image Processing, Advances in Structural Engineering and Mechanics, 2015.
  4. Zhang, L., Yang, F., Daniel Zhang, Y., & Zhu, Y. J., Road Crack Detection Using Deep Convolutional Neural Network, 2016 IEEE International Conference on Image Processing (ICIP), Vol.28, 2016.
  5. Cha, Y.-J., Choi, W., & Bykztrk, O., Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks, Computer-Aided Civil and Infrastructure Engineering, Vol.29, 2017.
  6. Chang, P. C., Flatau, A., & Liu, S. C., Review Paper: Health Monitoring of Civil Infrastructure, Structural Health Monitoring, Vol.2, 2003.
  7. Sun, F., Wang, N., He, J., Guan, X., & Yang, J., Lamb Wave Damage Quantification Using GA-Based LS-SVM, Materials, Vol.10, 2017.
  8. Dumoulin, C., & Deraemaeker, A., Real-time Fast Ultrasonic Monitoring of Concrete Cracking using Embedded Piezoelectric Transducers, Smart Materials and Structures Vol.26, 2017.
  9. Chady, T., Enokizono, M., & Sikora, R., Crack Detection and Recognition using an Eddy Current Differential Probe, IEEE Transactions on Magnetics, Vol.35, 1999.
  10. Maheshwari, M., Annamdas, V. G. M., Pang, J. H. L., Asundi, A., & Tjin, S. C., Crack Monitoring using Multiple Smart Materials; Fiber-optic Sensors & Piezo Sensors, International Journal of Smart and Nano Materials, Vol.8, 2017
  11. An, Y. K., Min Kim, J., & Sohn, H., Laser Lock-in Thermography for Detection of Surface-breaking Fatigue Cracks on Uncoated Steel Structures, NDT and E International, Vol.65, 2014.
  12. Zhang, Z., A Flexible New Technique for Camera Calibration, IEEE Trans. Pattern Anal. Mach. Intell., Vol.22, 2010.
  13. Krizhevsky, A., Sutskever, I., & Hinton, G. E., ImageNet Classification with Deep Convolutional Neural Networks, Advances In Neural Information Processing Systems, 2012.