DOI QR코드

DOI QR Code

Numerical study on rock splitting using the cylindrical cavity

원형 자유면을 이용한 암반 파쇄의 수치해석적 연구

  • Ahn, Sung Kwon (New Transportation Systems Research Center, Korea Railroad Research Institute)
  • 안성권 (한국철도기술연구원 신교통연구본부)
  • Received : 2017.10.20
  • Accepted : 2017.11.17
  • Published : 2017.11.30

Abstract

This paper presents key findings obtained from the numerical experiment investigating into the use of the cylindrical cavity for rock splitting operations. The stress and strain path analyses were carried out in order to provide a better insight into the crack formation. The principal stress analysis carried out along the crack line using the results obtained from these numerical analyses allowed the failure of the brittle material and the crack propagation to be investigated. This paper also suggested possible reasons for the change in crack direction observed during the rock splitting operations using the results obtained.

본 논문은 원형 자유면을 이용한 암반 파쇄에 대한 수치해석적 연구이다. 암반 파쇄시 균열 발생에 대한 메커니즘을 알아보기 위하여 수치해석을 통해 응력 및 변형율 경로를 분석하였다. 수치해석 결과로부터 균열선의 주응력 분석으로 최대 주응력을 산출하여 취성 재료의 파괴와 균열 진전에 대하여 분석 규명하였다. 또한 본 연구결과를 통하여 암반파쇄시 균열 진전 방향이 전환되는 거동 메커니즘을 제시하였다.

Keywords

References

  1. Bahrani, N., Kaiser, P.K. (2017), "Estimation of confined peak strength of crack-damaged rocks", Rock Mechanics and Rock Engineering, Vol. 50, No. 2, pp. 309-326. https://doi.org/10.1007/s00603-016-1110-1
  2. Farmer, I.W. (1983), Engineering Behaviour of Rocks, Chapman and Hall Ltd, 2nd edition, pp. 1-32.
  3. Ganne, P., Vervoort, A. (2006), "Characterisation of tensile damage in rock samples induced by different stress paths", Pure and Applied Geophysics, Vol. 163, No. 10, pp. 2153-2170. https://doi.org/10.1007/s00024-006-0123-1
  4. Kaiser, P.K., Yazici, S., Maloney S. (2001), "Mining-induced stress change and consequences of stress path on excavation stability - a case study", International Journal of Rock Mechanics & Mining Sciences, Vol. 38, pp. 167-180. https://doi.org/10.1016/S1365-1609(00)00038-1
  5. Perras, M.A., Diederichs, M.S. (2014), "A review of the tensile strength of rocks", Geotechnical and Geological Engineering, Vol. 32, No. 2, pp. 525-546. https://doi.org/10.1007/s10706-014-9732-0
  6. Rots, J.G., Blaauwendraad, J. (1989), "Crack model for concrete: discrete or smeard? Fixed, multidirectional or rotating?", Heron, Vol. 34, No. 1, pp.1-40.
  7. Scotta, R., Vitaliani, R., Saetta, A., Onate, E., Hanganu, A. (2001), "A scalar damage model with a shear retention factor for the analysis of reinforced concrete structures: theory and validation", Computers and Structures, Vol. 79, No. 7, pp. 737-755. https://doi.org/10.1016/S0045-7949(00)00178-4
  8. Stowe, R.L. (1969), "Strength and deformation properties of granite, basalt, limestone and tuff at various loading rates", US Army Engineering Waterways Experiment Station, CORPS of Engineers, Vicksburg, Mississippi, pp. 38-66.
  9. Willam, K., Pramono, E., Sture, S. (1987), "Fundamental issues of smeared crack models", SEM/RILEM International Conference on Fracture of Concrete and Rock, Houston, Texas, Shah & Swarts (Editors), 142-157.