DOI QR코드

DOI QR Code

Evaluation of rock load based on stress transfer effect due to tunnel excavation

굴착으로 인한 응력전이효과를 고려한 터널의 지반이완하중 평가

  • Lee, Jae-Kook (Dept. of Civil and Environmental Engineering, Hanyang University) ;
  • Kim, Jung-Joo (Dept. of Civil and Environmental Engineering, Hanyang University) ;
  • Rehman, Hafeezur (Dept. of Civil and Environmental Engineering, Hanyang University) ;
  • Yoo, Han-Kyu (Dept. of Civil and Environmental Engineering, Hanyang University)
  • 이재국 (한양대학교 건설환경공학과) ;
  • 김정주 (한양대학교 건설환경공학과) ;
  • ;
  • 유한규 (한양대학교 건설환경공학과)
  • Received : 2017.10.19
  • Accepted : 2017.11.15
  • Published : 2017.11.30

Abstract

Theoretical, empirical and numerical methods are used to evaluate the rock load due to tunnelling. Theoretical and empirical methods do not consider ground conditions, tunnel shape, and construction conditions. However, through numerical analysis, it is possible to analyze the displacement and stresses around tunnel due to its excavation, and evaluate the rock load considering ground and construction conditions. The stress transfer ratio(e) which is defined as a ratio of the difference between the major and minor principal stresses to major principal stress is used in order to understand the stress transfer effect around the tunnel excavation using numerical analysis results. The loosend area around tunnel periphery was found based on this approach. The difference of rock load from stress transfer effect was found according to the ground grade. From comparison, rock load obtained from stress transfer effect (e = 10%) were somewhat larger than the results obtained from the critical strain method, but smaller than those obtained from theoretical and empirical methods. The stress transfer effect approach considers the ground condition, tunnel shape; therefore, it can be applied to evaluate the rock load in concrete lining design.

터널 굴착에 따라 발생하는 지반이완하중은 이론식, 경험식 및 수치해석적 방법에 의해 산정할 수 있다. 이론식 및 경험식에 의한 방법은 지반조건, 터널형상, 그리고 시공조건을 고려할 수 없다. 그러나 수치해석적인 방법은 터널 굴착으로 인해 발생하는 굴착면 주변의 변위와 응력 분석이 가능하며, 지반조건 및 시공조건을 고려한 지반이완하중 산정이 가능하다. 터널 굴착면 주변에 발생하는 응력전이효과를 파악할 수 있는 최대주응력과 최소주응력과의 차이와 최대주응력에 대한 비로서 응력전이비(e)를 제시하였다. 이 결과를 이용하여 터널 굴착에 따른 굴착면 주변에서의 이격된 거리에 따라 발생하는 주응력 차이에 의한 지반이완 영역을 확인할 수 있었다. 또한, 지반등급별 변화와 응력전이비(e) 변화에 따른 수치해석을 실시하여 지반이완하중 값의 차이를 확인할 수 있었다. 본 연구의 방법과 기존의 지반이완하중 산정 결과와 비교한 결과, 응력전이효과(e = 10%)를 고려한 결과값이 한계변형률을 이용한 방법보다는 지반이완하중이 다소 크게 나타났으나 대체로 이론식 및 경험식 보다는 작게 나타났다. 따라서 응력전이효과를 고려한 지반이완하중 산정은 실제 지반조건과 터널 시공조건을 고려한 것으로 콘크리트라이닝 설계에 적용 가능한 방법이 될 것으로 판단된다.

Keywords

References

  1. Bieniawski, Z.T. (1989), Engineering rock mass classifications, John Wiley & Sons, New York, pp. 162-169.
  2. Grimstad, E., Barton, N. (1993), "Updating the Q-system for NMT", Proceedings of int. symp. on sprayed concrete - modern use of wet mix sprayed concrete for underground support, Fagernes, Oslo, pp. 46-66.
  3. Kim, J.J., Kim, J.S., Kim, M.K., Yoo, H.K. (2015), "Prediction of ground load by performing back analysis using composite support model in concrete lining design", KSCE Journal of Civil Engineering, Vol. 19, No. 6, pp. 1697-1706. https://doi.org/10.1007/s12205-015-1514-6
  4. Kim, J.J., Lee, J.K., Kim, J.U., Yoo, H.K. (2013), "Evaluation of rock load based on critical shear strain concept on tunnels", Journal of Korean Tunnelling and Underground Space Association, Vol. 15, No. 6, pp. 637-652. https://doi.org/10.9711/KTAJ.2013.15.6.637
  5. Kim, S.H., Park, I.J., Moon, H.K., Shin, Y.S. (2010), "A study on behavioral characteristics of concrete lining based on the equations of relaxed rock loads", Journal of Korean Tunnelling and Underground Space Association, Vol. 12, No. 6, pp. 443-450.
  6. Korean Tunneling Association (2009), A manual of tunnel design criteria, CIR, Seoul, pp. 145-165.
  7. Park, K.H., Shin, Y.W., Kim, J.J., Yoo, H.K. (2013), "A study on the estimation method of rock load applied to concrete lining using back analysis", Journal of the Korean Society of Civil Engineers, Vol. 33, No. 5, pp. 1957-1968. https://doi.org/10.12652/Ksce.2013.33.5.1957
  8. Reza, R.O., Erdal, U. (2009), "An empirical method for design of grouted bolts in rock tunnels based on the Geological Strength Index (GSI)", Engineering Geology, Vol. 107, No. 3-4, pp. 154-166. https://doi.org/10.1016/j.enggeo.2009.05.003
  9. Rose, D. (1982), "Revising Terzaghi's tunnel rock load coefficient", Proceedings of 23rd U.S Symposium on Rock Mechanics, AIME, New York, pp. 953-960.
  10. Sakurai, S. (1981), "Direct strain evaluation technique in construction of underground opening", Proceedings of 22nd U.S. Sympo. Rock Mech., Cambridge, MIT, pp. 298-302.
  11. Sakurai, S. (1982), "An evaluation technique of displacement measurements in tunnels", Journal of Geotechnical Engineering, JSCE, Vol. 317, pp 93-100.
  12. Sakurai, S. (1997), "Lesson learned from field measurements in tunnelling", Tunnelling and Underground Space Technology, Vol. 12, No. 4, pp. 453-460. https://doi.org/10.1016/S0886-7798(98)00004-2
  13. Sakurai, S., Kawashima, I., Otani, T. (1995), "A criterion for assessing the stability of tunnels." Eurock'93, Ribeiro e Sousa & Grossmann (eds), pp. 969-973.
  14. Terzaghi, K. (1943), Theoretical soil mechanics, John Wiley and Sons, New York, pp. 66-76.
  15. Terzaghi, K. (1946), Introduction to tunnel geology in rock tunneling with steel supports, Commercial shearing and stamping company, Youngstown, Ohio.
  16. Unal, E. (1983), Design guideline and roof control standards for coal mine roofs, Ph.D. Thesis, The Pennsylvania State University.
  17. Venkateswarlu, V. (1986), "Geomechanics classification of coal measure rocks vis-a-vis roof supports", Engineering Rock Mass Classification (ed. Bieniawski, Z. T.), John Wiley & Sons.
  18. Yang, J.H., Wang, S.R., Wang, Y.G., Li, C.L. (2015), "Analysis of arching mechanism and evolution characteristics of tunnel pressure arch", Jordan Journal of Civil Engineering, Vol. 9, No. 1, pp. 125-132.
  19. You, K.H., Lee, D.H. (2007), "The estimation of the relaxed rock mass height of a subsea tunnel under the overstressed ground conditions in coupled analysis", 2007 Special Symposium Korean Society for Rock Mechanics, pp. 137-146.
  20. You, K.H., Lee, D.H. (2008), "A numerical comparison study on the estimation of relaxed rock mass height around subsea tunnels with the existing suggested methods." Journal of Korean Tunnelling and Underground Space Association, Vol. 10, No. 1, pp. 25-36.
  21. Yu, B., Wang, H.J. (2008). Pressure arch theory and the tunnel depth classification method, China Railway Press, Beijing.
  22. Zhu, Z.G., Qiao, C.S., Gao, B.B. (2008), "Analysis of construction optimization and supporting structure under load of shallow multi-arch tunnel under unsymmetrical pressure", Rock and Soil Mechanics, Vol. 29, No. 10, pp. 2747-2752.

Cited by

  1. Review of Rock-Mass Rating and Tunneling Quality Index Systems for Tunnel Design: Development, Refinement, Application and Limitation vol.8, pp.8, 2018, https://doi.org/10.3390/app8081250