DOI QR코드

DOI QR Code

M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) 촉매상에서 합성가스 제조를 위한 메탄의 부분산화반응

Partial Oxidation of Methane to Syngas over M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) Catalysts

  • 투고 : 2017.09.18
  • 심사 : 2017.11.06
  • 발행 : 2017.12.10

초록

메탄의 부분 산화반응으로부터 합성가스를 제조하기 위해 M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm)를 제조하였다. 촉매는 BET, TEM, XPS의 기기를 사용하여 특성화하였다. M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm)의 BET 비표면적, 평균 기공 크기는 각각 538.8, 504.3, $447.3m^2/g$과 6.4, 6.8, 7.1 nm이었다. SBA-15 담체의 TEM 이미지는 중기공성 육방정계 구조를 보여주었고, Ce(10)-Ni(5)/SBA-15 촉매는 Ni와 Ce의 금속 입자가 SBA-15 담체의 구속효과에 의해서 담체 표면상에 균일하게 분포하고 있었다. XPS 분석으로 촉매 표면상에 격자산소($O^{2-}$, $O^-$)와 $Ce^{4+}$$Ce^{3+}$의 두개의 산화상태가 존재함을 알 수 있었다. 촉매상에서 메탄의 부분 산화 반응으로부터 합성가스의 수율은 1 atm, 973 K, $CH_4/O_2=2$, $GHSV=1.08{\times}10^5mL/g_{cat.}{\cdot}h$에서 52.9% $H_2$와 21.7% CO이었으며, 75 h의 반응에서도 이 값을 일정하게 유지하였다. M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm)촉매는 합성가스 수율이 같은 경향을 보여주었다. 이러한 결과는 조촉매인 Ce, Nd, Sm의 Redox 반응이 촉매의 수율과 안정성을 향상시킨다는 것을 보여주었다.

M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) catalysts were prepared for the partial oxidation of methane (POM) to syngas. The catalysts were characterized by BET, TEM, and XPS. The BET-specific surface area and average pore size for M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) were 538.8, 504.3, and $447.3m^2/g$ and 6.4, 6.8, and 7.1 nm, respectively. TEM results showed that the mesoporous hexagonol structure was formed for SBA-15, while the homogeneous dispersion of Ni and Ce particles on the surface was formed for Ce(10)-Ni(5)/SBA-15 caused by the confinment effect of SBA-15. XPS data confirmed that $Ce^{4+}$ and $Ce^{3+}$ on the surface catalyst have two oxidation states due to the lattice oxygen species ($O^{2-}$, $O^-$). The yields of POM to syngas over Ce(10)-Ni(5)/SBA-15 were 52.9% $H_2$ and 21.7% CO at 1 atm, 973 K, $CH_4/O_2=2$, $GHSV=1.08{\times}10^5mL/g_{cat.}{\cdot}h$, and these values were kept constant even after 75 h on streams. The same tendency of syngas yields was observed for M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm). These results confirm that the redox reaction of promoters including Ce, Nd, and Sm enhanced the stability and yield of catalysts.

키워드

참고문헌

  1. R. Horn and R. Schlogl, Methane activation by heterogeneous catalysis, Catal. Lett., 145, 23-39 (1915).
  2. H. J. Seo, U. I. Kang, and O. Y. Kwon, Characterization of Pd impregnated on metal/silica-pillared H-keyaites (M-SPK, M=Ti, Zr) catalysts for partial oxidation of methane to hydrogen, J. Ind. Eng. Chem., 20, 1332-1337 (2014). https://doi.org/10.1016/j.jiec.2013.07.014
  3. W. Taifan and J. Baltrusaitis, $CH_4$ conversion to value added products : potential, limitations and extensions of a single step heterogeneous catalysis, Appl. Catal. B, 198, 525-547 (2016). https://doi.org/10.1016/j.apcatb.2016.05.081
  4. M. Gharlbi, F. T. Zangeneh, F. Yaripour, and S. Sahebdelfar, Nanocatalysts for conversion of natural gas to liquid fuels and petrochemical feedstocks, Appl. Catal. B, 443-444, 8-26 (2012). https://doi.org/10.1016/j.apcata.2012.06.039
  5. P. Tang, Q. Zhu, Z. Wu, and D. Ma, Methane activation: The past and future, Energy Environ. Sci., 7, 2580-2591 (2014). https://doi.org/10.1039/C4EE00604F
  6. H. Tian, X. Li, L. Zeng, and J. Gong, Recent advances on the design of group VIII base-metal catalysts with encapsulated structures, ACS Catal., 5, 4959-4977 (2015). https://doi.org/10.1021/acscatal.5b01221
  7. S. Zhang, S. Muratsugu, N. Ishiguro, and M. Tada, Ceria-doped syn catalysts for dry reforming of methane, ACS Catal., 3, 1855-1864 (2013). https://doi.org/10.1021/cs400159w
  8. J. M. M. de la Hoz and P. B. Balbuena, Small-molecule activation driven by confinement effects, ACS Catal., 5, 215-224 (2015). https://doi.org/10.1021/cs5013798
  9. W. Cai, J. Yu, C. Anand, A. Vinu, and M. Jaroniec, Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties, Chem. Mater., 23, 1147-1157 (2011). https://doi.org/10.1021/cm102512v
  10. Z. Wu, Q. Li, D. Feng, P. A. Webley, and D. Zhao, Ordered mesoporous crystalline ${\gamma}$-$Al_2O_3$ with variable architecture and porosity from a single hard template, J. Am. Chem. Soc., 132, 12042-12050 (2010). https://doi.org/10.1021/ja104379a
  11. Q. Yuan, A. X. Yin, C. Luo, L. D. Sun, Y. W. Zhang, W. T. Duan, H. C. Lin, and C. H. Yun, Facile synthesis for ordered mesoporous ${\gamma}$-aluminas with high themal stability, J. Am. Chem. Soc., 130, 3465-3472 (2008). https://doi.org/10.1021/ja0764308
  12. N. Wang, Huang, K. Shen, L. Huang, X. Yu, W. Qian, and W. Chu, Facile route for synthesizing ordered mesoporous Ni-Ce-Al oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas, ACS Catal., 3, 1638-1651 (2013). https://doi.org/10.1021/cs4003113
  13. H. Liu, Y. Li, H. Wu, W. Yang, and D. He, Effect of Nd, Ce, La modification on catalytic performance of Ni/SBA-15 catalyst in $CO_2$ reformig of $CH_4$, Chin. J. Catal., 35, 1520-1528 (2014). https://doi.org/10.1016/S1872-2067(14)60095-4
  14. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 120, 6024-6036 (1998). https://doi.org/10.1021/ja974025i
  15. L. Xu, W. Mi, and Q. Su, Hydrogen production through diesel steam reforming over rare-earth promoted Ni/${\gamma}$-$Al_2O_3$ catalysts, J. Nat. Gas Chem., 20, 287-293 (2011). https://doi.org/10.1016/S1003-9953(10)60188-0
  16. X. P. Dai, R. J. Li, C. C. Yu, and Z. P. Hao, Unsteady-state direct partial oxidation of methane to synthesis gas in a fixed-bed reactor using $AFeO_3$ (A=La, Nd, Eu) perovskite-type oxides as oxygen storage, J. Phys. Chem. B, 110, 22525-22531 (2006). https://doi.org/10.1021/jp063490b
  17. W. D. Zhang, B. S. Liu, Y. P. Zhan, and Y. L. Tian, Syngas production via $CO_2$ reforming of methane over $Sm_2O_3-La_2O_3$- supported Ni catalyst, Ind. Eng. Chem. Res., 48, 7498-7504 (2009). https://doi.org/10.1021/ie9001298
  18. N. Wang, W. Chu, T. Zhang, and X. S. Zhao, Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas, Int. J. Hydrogen Energy, 37, 19-30 (2012). https://doi.org/10.1016/j.ijhydene.2011.03.138
  19. A. Davidson, J. F. Tempere, M. Che, H. Roulet, and G. Dufour, Spectroscopic studies of nickel(II) and nickel(III) species generated upon thermal treatments of nickel/ceria-supported materials, J. Phys. Chem., 100, 4919-4929 (1996). https://doi.org/10.1021/jp952268w
  20. L. P. Matte, A. S. Kilian, L. Luza, M. C. M. Alves, J. Morais, D. L. Baptista, J. Dupont, and F. Bernardi, Influence of $CeO_2$ support on the reduction properties of Cu/$CeO_2$ and Ni/$CeO_2$ nanoparticles, J. Phys. Chem. C, 119, 26459-26470 (2015). https://doi.org/10.1021/acs.jpcc.5b07654
  21. P. Pal, R. K. Singha, A. Saha, R. Bal, and A. B. Panda, Defect-induced efficient partial oxidation of methane over nonstoichometric Ni/$CeO_2$ nanocrystals, J. Phys. Chem. C, 119, 13610-13618 (2015). https://doi.org/10.1021/acs.jpcc.5b01724
  22. G. Zhou, H. Liu, K. Cui, A. Jia, G. Hu, Z. Jiao, Y. Liu, and X. Zhang, Role of surface Ni and Ce species of Ni/$CeO_2$ catalysts in $CO_2$ methanation, Appl. Surf. Sci., 383, 248-252 (2016). https://doi.org/10.1016/j.apsusc.2016.04.180
  23. Y. Guo, J. Zou, X. Shi, P. Rukundo, and Z.-J. Wang, A Ni/$CeO_2$-CDC-SiC catalyst with improved coke resistance in $CO_2$ reforming of methane, ACS Sustain. Chem. Eng., 5, 2330-2338 (2017). https://doi.org/10.1021/acssuschemeng.6b02661
  24. R. K. Pati, I. C. Lee, S. Hou, O. Akhueemonkhan, K. J. Gaskell, Q. Wang, A. I. Frenkel, D. Chu, L. G. Salamanca-Riba, and S. H. Ehrman, Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction, ACS Appl. Mater. Interfaces, 1, 2624-2635 (2009). https://doi.org/10.1021/am900533p