DOI QR코드

DOI QR Code

Characteristics of Activated Carbon Prepared from Waste Citrus Peel by KOH Activation

KOH 활성화법으로 제조한 폐감귤박 활성탄의 특성

  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University) ;
  • Kang, Kyung-Ho (Livestock Division, Jeju Special Self-Governing Province) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • Received : 2017.07.31
  • Accepted : 2017.09.19
  • Published : 2017.12.10

Abstract

An activated carbon was prepared from waste citrus peel produced in large amounts in Jeju Island, Korea, using KOH activation and its characteristics was examined. Under the condition of the KOH ratio between 100 and 300%, activation temperature from 400 to $900^{\circ}C$ and activation time from 0.5 to 1.5 h, the iodine adsorptivity of the activated carbon prepared increased but the yield decreased with respect to the increase of each conditions. The iodine adsorptivity and yield of the activated carbon prepared at the activation time of more than 1.5 h were similar to those of using 1.5 h. In addition, as the KOH ratio increased, the specific surface area and pore volume of the activated carbon increased, but the pore diameter decreased. The activated carbon has an average pore diameter of $20{\sim}25{\AA}$. Also, the activated carbon prepared at 300% KOH and $900^{\circ}C$ for 1.5 h has the highest specific surface area of $1,527m^2/g$ and iodine adsorptivity of 1,246 mg/g.

제주도에서 다량 발생하고 있는 폐감귤박을 활성화제로 KOH를 사용하여 활성탄을 제조하였고, 제조된 활성탄의 특성을 검토하였다. KOH 침적비율(100~300%), 활성화 온도($400{\sim}900^{\circ}C$) 및 활성화 시간(0.5~1.5 h)의 조건에서 각 조건이 증가할수록 요오드 흡착능은 증가하였으나 활성탄의 수율은 감소하였다. 그리고 활성화 시간의 경우 1.5 h 이상에서는 요오드 흡착능 및 활성탄 수율에서 비슷하였다. 또한 KOH 침적비율이 증가할수록 비표면적 및 세공부피는 증가하였으나 세공크기는 감소하였으며, 제조된 평균 세공크기는 $20{\sim}25{\AA}$이었다. KOH의 침적비율 300%, 활성화 온도 $900^{\circ}C$, 활성화 시간 1.5 h에서 제조된 활성탄은 비표면적 및 요오드 흡착능이 각각 $1,527m^2/g$ 및 1,246 mg/g으로 가장 높았다.

Keywords

References

  1. S. J. T. Pollard, G. D. Fowler, C. J. Sollars, and R. Perry, Low-cost adsorbents for waste and wastewater treatment: A review, Sci. Total Environ., 116, 31-52 (1992). https://doi.org/10.1016/0048-9697(92)90363-W
  2. M. Valix, W. H. Cheung, and G. McKay, Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption, Chemosphere, 56, 493-501 (2004). https://doi.org/10.1016/j.chemosphere.2004.04.004
  3. M. M. Mohamed, Acid dye removal: Comparison of surfactant modified mesoporous FSM-16 with activated carbon derived from rice husk, J. Colloid Int. Sci., 272, 28-34 (2004). https://doi.org/10.1016/j.jcis.2003.08.071
  4. B. H. Hameed, A. T. M. Din, and A. L. Ahmad, Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies, J. Hazard. Mater., 141, 819-825 (2007). https://doi.org/10.1016/j.jhazmat.2006.07.049
  5. N. Kannan and M. M. Sundaram, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons - A comparative study, Dyes Pigm., 51, 25-40 (2001). https://doi.org/10.1016/S0143-7208(01)00056-0
  6. I. A. W. Tan, A. L. Ahmad, and B. H. Hameed, Adsorption of basic dye on high-surfacearea activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies, J. Hazard. Mater., 154, 337-346 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.031
  7. C. A. Basar, Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot, J. Hazard. Mater., B135, 232-241 (2006).
  8. R. L. Tseng, S. K. Tseng, and F. C. Wu, Preparation of high surface area carbons from corncob using KOH combined with $CO_2$ gasification for the adsorption of dyes and phenols from water, Colloids Surf. A, 279, 69-78 (2006). https://doi.org/10.1016/j.colsurfa.2005.12.042
  9. G. G. Stavropoulos and A. A. Zabaniotou, Production and characterization of activated carbons from olive-seed waste residue, Microporous Mesoporous Mater., 82, 79-85 (2005). https://doi.org/10.1016/j.micromeso.2005.03.009
  10. A. A. Attia, B. S. Girgis, and N. A. Fathy, Removal of methylene blue by carbons derived from peach stones by $H_3PO_4$ activation: batch and column studies, Dyes Pigm., 76, 282-289 (2008). https://doi.org/10.1016/j.dyepig.2006.08.039
  11. A. Aygun, S. Yenisoy-Karakas, and I. Duman, Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties, Microporous Mesoporous Mater., 66, 189-195 (2003). https://doi.org/10.1016/j.micromeso.2003.08.028
  12. K. B. Chung, H. I. Ryu, S. H. Chang, J. C. Kim, and H. H. Kim, Preparation of activated carbon using a Pueraria Thunbergiana, J. Korean Ind. Eng. Chem., 12, 272-276 (2001).
  13. G. San Miguel, G. D. Fowler, and C. J. Sollars, A study of the characteristics of activated carbons produced by steam and carbon dioxide activation of waste tyre rubber, Carbon, 41, 1009-1016 (2003). https://doi.org/10.1016/S0008-6223(02)00449-9
  14. K. H. Kang, S. K. Kam, and M. G. Lee, Adsorption characteristics of activated carbon prepared from waste citrus peels by NaOH activation, J. Environ. Sci. Int., 16, 1279-1285 (2007). https://doi.org/10.5322/JES.2007.16.11.1279
  15. K. H. Kang, S. K. Kam, and M. G. Lee, Preparation of activated carbon from waste citrus peels by $ZnCl_2$, J. Environ. Sci. Int., 16, 1091-1098 (2007). https://doi.org/10.5322/JES.2007.16.9.1091
  16. A. Ahmadpour and D. D. Do, The preparation of active carbons from coal by chemical and physical activation, Carbon, 34, 471-479 (1996). https://doi.org/10.1016/0008-6223(95)00204-9
  17. G. M. S. El-Shafei, I. M. A. El-Sherbiny, A. S. Darwish, and C. S. Philip, Silkworms' feces-based activated carbons as cheap adsorbents for removal of cadmium and methylene blue from aqueous solution, Chem. Eng. Res. Des., 92, 461-470 (2014). https://doi.org/10.1016/j.cherd.2013.09.004
  18. J. A. Macia-Agullo, B. C. Moore, D. Cazorla-Amoros, and A. Linares-Solano, Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation, Carbon, 42, 1367-1370 (2004). https://doi.org/10.1016/j.carbon.2004.01.013
  19. H. H. Kim, J. M. Lee, and M. K. Chung, Preparation of activated carbon from sucrose by chemical activation, J. Korean Ind. Eng. Chem., 13, 156-161 (2002).
  20. J. M. Lee, A Study on the Preparation of Activated Carbon from Pepper-seed, Master Thesis, Sunmoon University, Korea (2002).
  21. H. H. Kim, J. M. Lee, and M. K. Ghung, Preparation of activated carbons from rice hull by NaOH and KOH activation, J. Korean Ind. Eng. Chem., 14, 381-385 (2003).
  22. J. A. Macia-Agullo, B. C. Moore, D. Cazorla-Amoros, and A. Linares-Solano, Influence of carbon fibres crystallinities on their chemical activation by KOH and NaOH, Microporous Mesoporous Mater., 101, 397-405 (2007). https://doi.org/10.1016/j.micromeso.2006.12.002
  23. V. Fierro, V. Torne-Fernandez, and A. Celzard, Methodical study of the chemical activation of Kraft lignin with KOH and NaOH, Microporous Mesoporous Mater., 101, 419-431 (2007). https://doi.org/10.1016/j.micromeso.2006.12.004
  24. H. Marsh, D. Crawford, T. M. O'Grady, and A. Wennerberg, Carbons of high surface area. A study by adsorption and high resolution electron microscopy, Carbon, 20, 419-426 (1982). https://doi.org/10.1016/0008-6223(82)90042-2
  25. S. C. Kim and I. K. Hong, Manufacturing and physical properties of coal based activated carbon, J. Korean Soc. Environ. Eng., 20, 745-754 (1998).
  26. S. W. Lee, J. C. Moon, C. H. Lee, D. C. Ryu, D. H. Choi, B. S. Ryu, and S. K. Song, Analysis of pore characteristics between commercial activated carbons and domestic anthracite-based activated carbon, J. Korean Soc. Environ. Eng., 23, 1211-1218 (2001).
  27. T. Otawa, M. Yamada, R. Tanibata, M. Kawakami, E. F. Vansant, and R. Dewolfs, Gas Separation Technology, Elsevier, Amsterdam, Netherlands (1990).