
J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN(Print) 1226-0657
https://doi.org/10.7468/jksmeb.2017.24.4.201 ISSN(Online) 2287-6081
Volume 24, Number 4 (November 2017), Pages 201–209

CONVERGENCE RESULTS FOR THE COOPERATIVE
CROSS-DIFFUSION SYSTEM WITH WEAK COOPERATIONS

Seong-A Shim

Abstract. We prove convergence properties of the global solutions to the cooper-
ative cross-diffusion system with the intra-specific cooperative pressures dominated
by the inter-specific competition pressures and the inter-specific cooperative pres-
sures dominated by intra-specific competition pressures. Under these conditions the
W 1

2 -bound and the time global existence of the solution for the cooperative cross-
diffusion system have been obtained in [10]. In the present paper the convergence
of the global solution is established for the cooperative cross-diffusion system with
large diffusion coefficients.

1. Introduction

The cooperative cross-diffusion system refers the following quasilinear parabolic
system in population dynamics :

(1.1)





ut = (d1 u + α11u
2 + α12uv)xx + u(a1 − b1u + c1v) in [0, 1]× (0,∞),

vt = (d2 v + α21uv + α22v
2)xx + v(a2 + b2u− c2v) in [0, 1]× (0,∞),

ux(x, t) = vx(x, t) = 0 at x = 0, 1,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0 in [0, 1],

where α12, α21, d, ai, bi, ci are positive constants for i = 1, 2. Here we assume
that the initial functions u0, v0 are positive functions on the domain [0, 1]. In the
system (1.1) u and v are nonnegative functions which represent the population den-
sities of two competing species. d1 and d2 are the diffusion rates of the two species,
respectively. a1 and a2 denote the intrinsic growth rates, b2 and c1 account for
inter-specific cooperative pressures, b1 and c2 account for intra-specific competition
pressures. Intra-specific competition pressures result in a reduction of population
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growth rate as population density increases. On the other hand, inter-specific coop-
erative pressure b2 helps the population growth rate of u increase as the population
density of v increases, and c2 acts similarly. When α11 = α12 = α21 = α22 = 0, (1.1)
reduces to the well-known Lotka-Voltera cooperative-diffusion system. α11 and α22

are usually referred as self-diffusion, and α12, α21 are cross-diffusion pressures. By
adopting the coefficients αij (i, j = 1, 2) the system (1.1) takes into account the pres-
sures created by mutually competing species. For more details on the backgrounds
of this model, we refer the reader to [6] and [8].

In [10] the existence of global solutions of the cooperative cross-diffusion system
(1.1) is obtained under the following conditions.

(1.2) α2
12 < 8α11α21 and α2

21 < 8α12α22

(1.3) b1c2 > b2c1.

The inequalities in (1.2) are reduced to

α12α21 < 64α11α22,

and this means that cross-diffusion pressures are controlled in low level compare to
the self-diffusion pressures. The inequality (1.3) means the product of inter-specific
cooperative pressures b2c1 is less than the product of intra-specific competition pres-
sures b1c2. In this sense the inequality (1.3) may be called as the weak cooperative
condition for the system (1.1).

Now in the present paper we are interested in the convergence of the global
solutions of the cooperative cross-diffusion system (1.1). Throughout this this paper
we assume condition (1.2) and (1.3) and use the following notations.

Notation 1. Let Ω be a domain(i.e., a bounded, connected open set) in Rn. The
norm in Lp(Ω) is denoted by |·|Lp(Ω), 1 ≤ p ≤ ∞. The usual Sobolev spaces of real
valued functions in Ω with exponent k ≥ 0 are denoted by W k

p (Ω), 1 ≤ p < ∞. And
‖·‖W k

p (Ω) represents the norm in the Sobolev space W k
p (Ω). For Ω = [0, 1] ⊂ R1 we

shall use the simplified notation ‖·‖k,p for ‖·‖W k
p (Ω) and |·|p for |·|Lp(Ω).

For readers reference we state the global existence result that have obtained in
[10].

Theorem 1.1 ([10, Theorem 1.4]). Suppose that the initial functions u0, v0 are
in W 2

2 ([0, 1]). Also assume the conditions (1.2) and (1.3). Let (u(x, t), v(x, t)) be
the maximal solution to the system (1.1) as in the result of Amann([1]). Then
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there exist positive constants M ′ = M ′(‖u0‖1, ‖v0‖1, di, αij , ai, bi, ci, i = 1, 2) and
M = M(di, αij , ai, bi, ci, i = 1, 2) such that

sup{‖u(·, t)‖1,2, ‖v(·, t)‖1,2 : t ∈ [0, T )} ≤ M ′,

sup{u(x, t), v(x, t) : (x, t) ∈ [0, 1]× [0, T )} ≤ M.

Also it is concluded that T = +∞, and thus the maximal solution (u(x, t), v(x, t)) is
a global solution.

The main result of the present paper is the convergence of the solution to the
system (1.1) as stated in the following theorem.

Theorem 1.2. Assume the conditions (1.2), (1.3), and that u0, v0 are in W 2
2 ([0, 1])

for the system (1.1). If d1, d2 ≥ 1 satisfy that

(1.4) (b2
2α

2
12u

2 + c2
1α

2
21v

2)M2 < 4b2c1u vd1d2,

where M is the positive constant in Theorem 1.1 and (u, v) =
(

a1c2+a2c1
b1c2−b2c1

, a1b2+a2b1
b1c2−b2c1

)
,

then the solution (u(t), v(t)) converges to (u, v) uniformly in [0, 1] as t → ∞, and
the constant steady-state (u, v) is globally asymptotically stable.

Remark 1. The W 1
2 -bound of u, v for the system (1.1) has been obtained under the

conditions (1.2), (1.3) in [10]. In the case that condition (1.2) fails, and condition
(1.3) holds, we only have the boundedness result of the L1-norms of u, v for the
system (1.1) from Theorem 1.2 in [10]. In that case the solution u, v may not exists
globally in time. If the cross-diffusion pressures are in high level compare to the
self-diffusion pressures, or the intra-specific cooperative pressures exceed the inter-
specific competition pressures, then we may expect that u, v blow-up in finite time
for the system (1.1).

In Section 2 we collect calculus inequalities and comparison results which are
necessary for the proof of Theorem 1.2 in Section 3.

2. Calculus Inequalities and Comparison Results

Theorem 2.1 (A Sobolev type embedding Theorem by Rellich and Kondrachov).
Let Ω be a bounded domain with with smooth boundary in Rn and 1 ≤ p ≤ ∞. Then

W 1
p (Ω) ⊂ C(Ω) for p > n

Proof. The proof may found in [3] or [7]. ¤
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Lemma 2.1. For every function u in W 2
2 ([0, 1]) with ux(0) = ux(1) = 0

(2.1) |ux|2 ≤ |uxx|
1
2
2 |u|

1
2
2 .

Proof. Using the given boundary conditions and Hölder’s inequality
∫ 1

0
u2

x dx = −
∫ 1

0
uuxx dx ≤ |uxx|2|u|2,

and thus the inequality (2.1) holds. ¤

Lemma 2.2 (positivity of the maximal solution to (1.1)). Suppose that the initial
functions u0, v0 are in W 2

2 ([0, 1]). Let (u(x, t), v(x, t)) be the maximal solution to
the system (1.1) for x ∈ [0, 1], t ∈ [0, T ]. Then

u(x, t) > 0, v(x, t) > 0 for x ∈ [0, 1], t ∈ [0, T ]

Proof. Each of the first two equations in the system (1.1) is expressed as

(2.2) ut = d1(1+2α11u+α12v)uxx+2(α11ux+α12vx)ux+(α12vxx+a1−b1u+c1v)u

(2.3) vt = d2(1+α12u+2α22v)vxx +2(α21ux +α22vx)vx +(α21uxx +a2+b2u−c2v)v

Here application of the parabolic maximum principles(may refer to [7], Theorem 5
on p. 173) for (2.2) and (2.3) yields that the maximum values of u(x, t) and v(x, t) do
not occur on (0, 1)× (0, T ]. Then by using the Neumann boundary condition of the
system (1.1) and the Hopf-type boundary point lemma (may refer to [7], Theorem
6 on p. 174) we see that the maximum values of u(x, t) and v(x, t) occurs at t = 0.
Now from the positivity of the initial functions u0(x), v0(x) of the system (1.1), it
is concluded that u(x, t) > 0, v(x, t) > 0 for all x ∈ [0, 1], t ∈ [0, T ]. ¤

Lemma 2.3 (Positivity of the global solution to (1.1)). Suppose that the initial
functions u0, v0 are in W 2

2 ([0, 1]). Also assume the conditions (1.2) and (1.3). Then
the solution (u(x, t), v(x, t)) to the system (1.1) satisfies

u(x, t) > 0, v(x, t) > 0 for x ∈ [0, 1], t ∈ [0,∞)

Proof. Under the conditions (1.2) and (1.3) the maximal solution (u(x, t), v(x, t))
to the system (1.1) is a global solution by Theorem 1.1. And from Lemma 2.2 we
obtain the positivity result on u(x, t) and v(x, t) for x ∈ [0, 1], t ∈ [0,∞). ¤



CONVERGENCE RESULTS FOR THE COOPERATIVE CROSS-DIFFUSION SYSTEM 205

3. Convergence Results(Proof of Theorem 1.2)

In [10] the proof of Theorem (1.1) deals with the constant M depending on the
parameters di, αij , ai, bi, ci, (i = 1, 2). Here following similar arguments as in [9] it
is possible to conclude the independence of the constant M in the proof of Theorem
(1.1) on d1, d2 in the case that d1 > 1, d2 > 1 are are sufficiently large. Using
these results we prove the convergence result Theorem 1.2 for the global solution
(u(x, t), v(x, t)) to the system (1.1) as t →∞ in this section.

By Lemma 2.3 we have that u(x, t) > 0 and v(t, x) > 0 in [0, 1]× [0,∞). Under
the weak cooperative condition (1.3), that is b1c2 > b2c1, the system (1.1) has the
unique constant steady-state (u, v) =

(
a1c2+a2c1
b1c2−b2c1

, a1b2+a2b1
b1c2−b2c1

)
in the first quadrant of

the phase plane of (u, v).

6

-
O

v

u

(u, v)

a1
b1

a2
c2

f(u, v) = 0

g(u, v) = 0

Figure 1. The zero sets of the functions f(u, v) = a1 − b1u + c1v,
g(u, v) = a2+b2u−c2v in the phase plane of (u, v) for the system (1.1)
with the weak cooperative condition b1c2 > b2c1

In order to observe the convergence of global solutions of the system (1.1) in the
weak cooperative case, we use the functional K(u, v) defined as :

K(u, v) =
∫ 1

0

{
b2

(
u− u− u log

u

u

)
+ c1

(
v − v − v log

v

v

)}
dx.

Here using the natural logarithmic function y = log x and its tangent line y = x− 1
at x = 1, we notice that K(u, v) ≥ 0 for all (u, v) in the first quadrant of the phase
plane, and K(u, v) = 0 only at (u, v). Now let us compute the time derivative of
K(u(t), v(t)) for the solution of the system (1.1).

dK(u(t), v(t))
dt

=
∫ 1

0

{
b2

(
1− u

u

)
ut + c1

(
1− v

v

)
vt

}
dx
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=
∫ 1

0

{
b2

(
1− u

u

)(
d1u + α11u

2 + α12uv
)
xx

+c1

(
1− v

v

) (
d2v + α21uv + α22v

2
)
xx

}
dx

+
∫ 1

0
{b2(u− u)(a1 − b1u + c1v) + c1(v − v)(a2 + b2u− c2v)} dx

From the Neumann boundary conditions ux(x, t) = vx(x, t) = 0 at x = 0, 1 as in the
third line of the system (1.1) it is reduced as

∫ 1

0
b2

(
1− u

u

) (
d1u + α11u

2 + α12uv
)
xx

dx

=
[
b2

(
1− u

u

)(
d1u + α11u

2 + α12uv
)
x

]1

0

−
∫ 1

0
b2

(
1− u

u

)

x

(
d1u + α11u

2 + α12uv
)
x

dx

= 0−
∫ 1

0
b2

(
u

u2

)
ux

(
d1u + α11u

2 + α12uv
)
x

dx

= −
∫ 1

0

{
b2u

u2
(d1 + 2α11u + α12v)u2

x +
b2α12u

u
uxvx

}
dx,

and similarly
∫ 1

0
c1

(
1− v

v

) (
d2v + α21uv + α22v

2
)
xx

dx

= −
∫ 1

0

{
c1v

v2
(d2 + α21u + 2α22v)v2

x +
c1α21v

v
uxvx

}
dx.

Also using that (u, v) satisfies both equations a1−b1u+c1v=0and a2 +b2u−c2v=0
it is reduced as

a1 − b1u + c1v = −b1(u− u) + c1(v − v),
a2 + b2u− c2v = b2(u− u)− c2(v − v).

Thus we have

dK(u(t), v(t))
dt

= −
∫ 1

0

{
b2u

u2
(d1 + 2α11u + α12v)u2

x +
(

b2α12u

u
+

c1α21v

v

)
uxvx

+
c1v

v2
(d2 + α21u + 2α22v)v2

x

}
dx

−
∫ 1

0
{b1b2(u− u)2 − 2b2c1(u− u)(v − v) + c1c2(v − v)2} dx.
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From the weak cooperative condition (1.3) we have a positive constant

δ =
1
2

min
{

b1b2, c1c2,
b2c1(b1c2 − b2c1)

b1b2 + c1c2

}
.

Using this constant we show that

(3.1) b1b2(u− u)2 − 2b2c1(u− u)(v − v) + c1c2(v − v)2 ≥ δ{(u− u)2 + (v − v)2}
by noticing the determinant of the quadratic expression

(b1b2 − δ)(u− u)2 − 2b2c1(u− u)(v − v) + (c1c2 − δ)(v − v)2

is negative as

D = (b2c1)2 − (b1b2 − δ)(c1c2 − δ)
= −δ2 + (b1b2 + c1c2)δ − b2c1(b1c2 − b2c1)
< (b1b2 + c1c2)δ − b2c1(b1c2 − b2c1)
< 0

Now we remind that the uniform bound M in Theorem 1.1 for the solution of the
system (1.1) in the case d1, d2 ≥ 1 is independent of d1, d2. Thus from the condition
d1, d2 ≥ 1 we have a constant M = M(αij , ai, bi, ci, i = 1, 2) such that

(3.2) 0 ≤ u(x, t), v(x, t) ≤ M for every (x, t) ∈ [0, 1]× [0,∞).

Thus for the constant M in (3.2) we may choose d1, d2 sufficiently large to satisfy
that

d1d2 >

(
b2
2α

2
12u

2 + c2
1α

2
21v

2
)
M2

4b2c1u v
as given in the condition (1.4). Hence by taking the positive constant

γ =
4b2c1u vd1d2 −

(
b2
2α

2
12u

2 + c2
1α

2
21v

2
)
M2

8M2 [b2u {d1 + (2α11 + α12)M}+ c1v {d2 + (α21 + 2α22)M}]
we aim to show that the following inequality holds :

(3.3)

b2u

u2
(d1 + 2α11u + α12v)u2

x

+
(

b2α12u

u
+

c1α21v

v

)
uxvx +

c1v

v2
(d2 + α21u + 2α22v)v2

x

≥ γ
{
u2

x + v2
x

}
.

For this purpose we observe the quadratic expression

(3.4)

{
b2u

u2
(d1 + 2α11u + α12v)− γ

}
u2

x +
(

b2α12u

u
+

c1α21v

v

)
uxvx

+
{

c1v

v2
(d2 + α21u + 2α22v)− γ

}
v2
x.
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Using the positive constant γ we see that the determinant of the quadratic expression
(3.4) is negative as in the following :

(
b2α12u

u
+

c1α21v

v

)2

− 4
{

b2u

u2
(d1 + 2α11u + α12v)− γ

}

·
{

c1v

v2
(d2 + α21u + 2α22v)− γ

}

≤ b2
2α

2
12u

2

u2
+

c2
1α

2
21v

2

v2
− 4b2c1u vd1d2

u2v2

+4γ

{
b2u

u2
(d1 + (2α11 + α12)M) +

c1v

v2
(d2 + (α21 + 2α22)M)

}

≤ 1
u2v2

[
(b2

2α
2
12u

2 + c2
1α

2
21v

2)M2 − 4b2c1u vd1d2

+4γM2{b2u(d1 + (2α11 + α12)M) + c1v(d2 + (α21 + 2α22)M)}]

< 0.

Thus we have the inequality (3.3).
From (3.1) and (3.3) we have

(3.5)
dK(u(t), v(t))

dt
≤ −γ

∫ 1

0

{
u2

x + v2
x

}
dx− δ

∫ 1

0

{
(u− u)2 + (v − v)2

}
dx ≤ 0.

And in (3.5) we see that dK(u(t),v(t))
dt = 0 only if u(x, t) ≡ u and v(x, t) ≡ v. Since

K(u, v) ≥ 0 for all (u, v) in the first quadrant of the phase plane, it is concluded
that the functional K(u(x, t), v(x, t)) is decreasing to zero as t →∞. Here by using
the uniform boundedness of (u(x, t), v(x, t)) in [0, 1] we obtain the L2 convergences,
|u(t)− u|2 → 0, |v(t)− v|2 → 0 as t →∞.

Using the uniform boundedness results in Theorem 1.1 that

sup
0≤t<∞

|uxx(t)|2 < ∞, sup
0≤t<∞

|vxx(t)|2 < ∞,

and applying the calculus inequality in Lemma 2.1 to the functions u(x, t)− u and
v(x, t) − v, we obtain the convergence (u(t), v(t)) → (u, v) as t → ∞ in W 1

2 ([0, 1]).
By using the Sobolev embedding result in Theorem 2.1 we show that (u(t), v(t))
converges to (u, v) uniformly in [0, 1] as t →∞. It is also shown that (u, v) is locally
asymptotically stable in C([0, 1]) from the fact that K(u(t), v(t)) is decreasing for
t ≥ 0. Therefore we conclude that (u, v) is globally asymptotically stable for the
system 1.1.
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