DOI QR코드

DOI QR Code

A Study of the Characteristics of the Human External Auditory Canal Using 3-Dimensional Medical Imaging

3차원 의료영상을 이용한 인체 외이도 특징에 관한 연구

  • Received : 2017.11.13
  • Accepted : 2017.11.25
  • Published : 2017.11.30

Abstract

Using Digital Imaging and Communications in Medicine(DICOM) and a 3D medical imaging program, the characteristics of the external auditory canal(EAC) were compared. Using images of the ears of 63 different male and female subjects of varying age, this study measured and compared EAC transverse axis lengths, internal diameter circumferences, and upper and lower curvature angles. The findings of the study indicated differences in EAC shapes according not only to age and sex but also to the left and right of the same subject. A comparison between the sexes of the subjects (35 males and 28 females) indicated that, on average, the length of the EAC was 4.75mm longer in males. Based on the lower curvature angle, the interior side of the diameter circumference of the EAC was found to be reduced on average by 37.2% compared to the exterior side. Although the upper curvature angle was on average $25.7^{\circ}$ larger than the lower curvature angle, 4 subjects showed a larger lower curvature angle and large differences between the upper and lower curvature angles were observed in 8 subjects of the younger age group (4~14 years old). This indicated changes in EAC curvature shapes during growth. This study presents a method to raise safety and precision by comparing direct measurements taken through physical means and indirect measurements acquired from existing ear samples. This was possible due to technological developments in which 3D medical image representation technology creates images close to reality, and, through further development, this method is expected to be used for standardization research of EAC shapes.

의료용 디지털 영상 및 통신 표준과 3차원 의료 영상 프로그램을 이용하여 외이도의 해부학적 특징들을 비교하였다. 실험은 연령과 성별이 다른 63귀의 영상을 이용하여 외이도의 횡축 길이, 내부 직경 둘레, 상하부 굴곡 각도를 측정한 후 비교하였다. 실험 결과 외이도 형태는 연령과 성별 뿐 만 아니라 동일인의 좌.우 에서도 다르게 나타났다. 성별 비교에서 남자 35귀, 여자 28귀에 대한 평균 길이는 남자가 4.75mm 길게 나타났다. 외이도 직경 둘레는 하부 굴곡 각도를 중심으로 내측이 외측 보다 평균 37.2% 감소된 형태로 나타났다. 상하부 굴곡 각도는 상부가 평균적으로 $25.7^{\circ}$ 높았으나 4귀에서 하부 각도가 높고, 연령이 낮은(4~14세) 8귀에서 상하부 굴곡 각도 차이가 크게 나타났다. 이는 성장하면서 외이도 굴곡 모양이 변화됨을 나타냈다. 본 연구는 기존 귀본 채취를 통한 간접 측정과 물리적 방법에 의한 직접 측정과 비교하여 안전성과 정밀성을 높일 수 있는 방법이다. 이는 3차원 의료 영상 표현 기술이 실제에 가깝게 표현할 수 있는 기술 향상 때문이며 더 발전하여 외이도 형태의 표준화 연구에도 활용될 수 있는 측정 방법이라 판단된다.

Keywords

References

  1. Shaw EAG, "The external ear: new knowledge," Scandinavian audiology, Vol. 5, pp. 24-50, 1975.
  2. S. D. Heo, J. H. Lee, S. M. Jeon, I. H. Kim, "Resonance in the Concha Cavity is Associated with the Size of the Pinna," Korean Journal of Communication Disorders, Vol. 15, pp. 107-113, 2010.
  3. H. J. Kang, K. S. Hu, W. C. Song, H. J. Kwon, D. K. Park, H. J. Sohn, K. S. Koh, S. H. Han, D. J. Park, R. H. Chung, H. J. Kim, "Physical Anthropologic Characteristics of the Auricle through the Metric and Non-metric Analysis in Korean Young Adults," The Korean Journal of Physical Anthropology, Vol. 19, No. 4, pp. 255-265, 2006. https://doi.org/10.11637/kjpa.2006.19.4.255
  4. S. O. Jang, B. Y. Choi, "Surgery of ear deformity and auricle," Department of Otorhinolaryngology, Seoul National University College of Medicine, Otolaryngology Head and Neck Surgery Seoul Symposium, Vol. 8, pp. 1-23, 2003.
  5. H. S. Jeong, H. E. Koo, S. M. Lee, S. Koo, S. H. Lee, T. H. Yu, "Changes in Resonance Frequency and Length of External Auditory Canal Related to the Age," Korean J Otolaryngol, Vol. 44, pp. 144-147, 2001.
  6. A. H. Choi, M. S. Lee, A. R. Choi, S. D. Heo, "Resonance Changes in the External Auditory Canal Associated with the Ear Canal Volume," Speech Sciences, Vol. 1, No. 3, pp. 151-154, 2009.
  7. S. J. Oh, Introduction to Hearing Aids, Sigma Press, pp. 3-26, 2015.
  8. Y. M. Shin, "3D Printing Medical Application," Proceedings of the Medical Society of fusion for 3D printing 2017, pp. 50-52, 2017.
  9. Ferreira. A, F. Gentil, J. M. R. S. Tavares, "Segmentation algorithms for ear image data towards biomechanical studies," Computer Methods in Biomechanics and Biomedical Engineering, Vol. 17, No. 8, pp. 888-904, 2014. https://doi.org/10.1080/10255842.2012.723700
  10. J. K. Lee, Y. M. Kim, D. Y. Kim, "Segmentation and Visualization of Human Anatomy using Medical Imagery," Journal of Korea Institute of Information, Electronics, and Communication Technology, Vol. 8, No. 1, pp. 191-197, 2013.
  11. S. E. Umbaugh, "Computer Vision and Image Processing," Prentice-Hall, pp. 84-86, 1998.
  12. J. R. Parker, "Algorithms for Image Processing and Computer Vision," John-Wiley & Sons, pp. 116-128, 1997.
  13. http://applications.3d4medical.com/eula
  14. J. W. Yoo, J. M. Lee, W. Y. Kim, "A Bone Age Assessment Method Based on Normalized Shape Model," Journal of Korea Multimedia Society, Vol. 12, No. 3, pp. 383-396, 2009.
  15. E. Pietka, L. Kaabi, "Feature Extraction in Carpal-Bone Analysis," IEEE Transactions on Medical Imaging, Vol. 12, No. 1, pp. 44-49, 1993. https://doi.org/10.1109/42.222665
  16. J. S. Lee, "The Application of TW3 method for Prediction about Bone Age in Hand AP Image of Children," Journal of the Korean Society of Radiology, Vol. 9, No. 6, pp. 349-356, 2015. https://doi.org/10.7742/jksr.2015.9.6.349
  17. Johansen PA, "Measurement of the human ear canal, " Acoustica, Vol. 33, pp. 349-351, 1975.
  18. D. P. Egolf, D. K. Nelson, H. C. Howell, V. D Larson, "Quantifying earcanal geometry with multiple computer-assisted tomographic scans," J Acoust Soc Am, Vol. 93, pp. 2809-2819, 1993. https://doi.org/10.1121/1.405802