DOI QR코드

DOI QR Code

쌍동형 카페리 구조설계용 프로그램 개발

Development of Structural Design Program to apply the Twin-Hull Car-ferry

  • 이정호 (목포해양대학교 대학원) ;
  • 오정모 (목포해양대학교 기관시스템공학과) ;
  • 서광철 (목포해양대학교 조선해양공학과)
  • Lee, Jung-Ho (Graduate School of Mokpo National Maritime University) ;
  • Oh, Jung-Mo (Department of Marine Engineering, Mokpo National Maritime University) ;
  • Seo, Kwang-Cheol (Department of Naval Architecture and Ocean Engineering, Mokpo National Maritime University)
  • 투고 : 2017.07.18
  • 심사 : 2017.10.28
  • 발행 : 2017.10.31

초록

쌍동선의 경우 선미의 형상적인 특이성으로 인하여, 두 개의 선체를 연결하는 부위는 선박의 항해 시 발생되는 피칭운동에 의한 손상이 자주 발생하고 있으며, 이로 인하여 주변부에 대한 구조보강 설계가 필요하다. 이러한 국부 보강에 대한 구조설계 지침이 명확하지 않기 때문에, 엔지니어는 판 두께, 보강재 변경 및 프레임 간격을 줄이는 방법으로 대응을 하고 있다. 그러나 이러한 부위는 선박의 길이방향으로 약 85 % 이상 위치하고 있기 때문에, 최소 구조부재를 국부 보강하여 중량 증가를 최소화하고, 이에 따른 건조비 증가 및 건현확보의 문제를 해결해야 한다. 따라서 본 연구에서는 KR(한국선급)의 고속경구조선 규칙을 바탕으로, 쌍동형 카페리 구조설계 절차를 분석하고 추가가 필요한 항목을 발굴하여 쌍동형 구조설계 프로그램을 개발하였다. 좌굴강도 평가 절차서 및 프로그램에 대한 신뢰성을 확보하기 위하여, 타 선급의 기준과 비교 검토를 수행하여 6 %내 차이가 발생함을 확인하였다.

Twin-hulls frequently incur structural damage at connecting members between the hull and deck induced by pitching motions during voyages. so, reasonable reinforcement is necessary around vulnerable spots such as corner knuckle, the chine bottom and inner hull. Since guidelines for structural design are not clear, engineers often respond by reinforcing plate thickness, changing stiffener sizes and reducing frame spacing, etc. These members constitute about 85 % of the longitudinal dimensions of the ship, so it is necessary to locally reinforce certain points to minimize weight stress, and also solve construction cost problems while securing the freeboard margin. Therefore, we developed a new program by analyzing the structural design procedures for the twin car-ferries based on Korean Register of Shipping (KR) High Speed Craft Rules, identifying items that need to be added. In order to ensure the reliability of buckling estimations for procedures and design programs, we conducted a comparative study with other standards and confirmed that differences were minimal.

키워드

참고문헌

  1. Kim, B. J., S. Y. Kwon, S. C. Kim and J. H. Lee(2011), Comparison study and structure analysis to investigate the design rule and criteria of catamaran, Journal of the Society of Naval Architectures of Korea. Vol. 48, No. 6, pp. 479-489. https://doi.org/10.3744/SNAK.2011.48.6.479
  2. Park, J. S., J. Y. Ko, K. W. Lee and W. J. Oh(2009), Structural analysis of an 38 feet diffusion style for high-speed catamaran yacht, Journal of Navigation and Port Research, Vol. 33, No. 3, pp. 167-174. https://doi.org/10.5394/KINPR.2009.33.3.167
  3. Park, J. S. and J. Y. Ko(2005), Estimation about Local Strength using FE-Analysis for Steel Yacht, Journal of the Korean Society of Marine Environment & Safety, Vol. 11, No. 2, pp. 77-82.
  4. KR(2017a), Rules for the Classification of High Speed and Light Craft, Vol. 3, pp. 9-47.
  5. DNV-GL software(2015), Rule strength analysis of hull structures, Section scantlings.
  6. DNV OS C201(2011), Structural Design of Offshore Units (WSD Method) Sec 9 : Weld connections, pp. 53-59.
  7. DNV RP C201(2010), Buckling Strength of Plated Structures, pp. 1-33.
  8. KR Software(2015), SeaTrust HullScan, Section longitudinal member calculation.
  9. KR(2017b), Guidance Relating to the Rules for the Classification of Steel Ships Pt 7: Ships of special service, Annex. 7-3, pp. 124-134.
  10. ABS Guide(2017), Buckling and ultimate strength assessment for offshore structures, Section 3, Plates, stiffened panels and corrugated panels, pp. 23-46.
  11. Ship Right-Lloyd's Register(2004), Structural design assessment, primary structures of tankers, Chapter 2 : Primary Structure of Tankers, Section 6 : Buckling acceptance criteria, pp. 40-42.

피인용 문헌

  1. A Study on the Buckling Strength of Perforated Plates for 60M Twin-hull Car-ferry vol.24, pp.1, 2018, https://doi.org/10.7837/kosomes.2018.24.1.126
  2. 연안 항해용 스틸 쌍동 차도선의 경량화 모델 및 구조안전성 평가 vol.26, pp.4, 2017, https://doi.org/10.7837/kosomes.2020.26.4.403