DOI QR코드

DOI QR Code

Long-term Variation and Flux of Organic Carbon in the Human-disturbed Yeongsan River, Korea

영산강의 유기물 플럭스와 장기변동에 대한 연구

  • CHO, HYEONG-CHAN (Department of Marine Resources, Mokpo National University) ;
  • CHO, YEONG-GIL (Department of Marine Resources, Mokpo National University)
  • 조형찬 (목포대학교 해양자원학과) ;
  • 조영길 (목포대학교 해양자원학과)
  • Received : 2017.09.20
  • Accepted : 2017.11.22
  • Published : 2017.11.30

Abstract

Dissolved and particulate organic carbon concentrations and fluxes were measured and estimated for the Yeongsan River during 2006~2015. The dissolved organic carbon (DOC) concentrations ranged from 2.49 to $4.39mg{\cdot}C/L$ with a variance of 30.1% (${\sigma}_x/\bar{x}$), and showed a simple correlation to algal bloom and precipitation. The particulate organic carbon (POC) concentrations had gradually decreased from 6.68 to $0.19mg{\cdot}C/L$ for 10 years, and changed definitely with weir construction in 2011. Based on the relationships between POC and suspended particulate matters and between POC and chlorophyll-a, we found out that the distinct variation of the origin and composition of POC was caused by stagnation and screening effect of the dammed river. The total organic carbon (TOC) concentrations dropped to 52.3% (from 8.26 to $3.94mg{\cdot}C/L$) as the POC concentrations diminished to more than 94.8% after weir construction, in which the DOC forms up to 90.9%. The fluxes of TOC, based on the relationship between the annual TOC concentration and the discharge of Yeongsan dike sluice, were $2.56{\sim}19.41{\times}10^9g{\cdot}C/yr$, and showed a great deal of variability in 2011. Since then the TOC flux dropped to $5.40{\times}10^9$ (2011~2015) from $14.54{\times}10^9g{\cdot}C/yr$ (2006~2010). These results suggest that the weirs trapped annually $1.83{\times}10^9g{\cdot}C$ on a river bed, but released in great levels of dissolved organic form at their exits.

영산강의 유기물 농도와 플럭스를 파악하기 위하여 2006~2015년까지 10년 동안 약 2주 간격으로 영본D 지점에서 강물을 채취하여 유기물(DOC, POC)을 분석하였다. DOC 농도는 연평균 $2.49{\sim}4.39mg{\cdot}C/L$ 범위로 연중 중영양상태가 유지되었고, 조류증식 및 강수에 의한 증감에 따라 30.1% (${\sigma}_x/\bar{x}$) 변동하였다. POC는 2006년 $6.68({\pm}2.80)mg{\cdot}C/L$에서 2015년 $0.19({\pm}0.14)mg{\cdot}C/L$로 10년간 점진적으로 무려 97% 감소하였으며, 2011년 보건설을 기점으로 극적인 변화를 보였다. 이는 보에 의한 정체와 거름망 효과에 기인한 것으로서 보건설 전후로 POC와 SPM 관계의 상이함, 보건설 이후 POC와 chlorophyll-a의 관계로부터 POC의 기원 및 조성의 극명한 변화가 유도된 사실을 파악하였다. TOC 농도는 POC 감소효과로 보건설 이후 52.3% 줄었고 POC:DOC 존재형태 비 또한 DOC가 90.9%에 달하는 압도적 우위를 차지하였다. 하구언 배수량을 이용해 계산된 TOC 플럭스는 $2.56{\sim}19.41{\times}10^9g{\cdot}C/yr$ 범위에서 점진적 감소가 뚜렷하였으며, 2011년을 기점으로 전후 5년 평균 $14.54{\times}10^9g{\cdot}C/yr$에서 $5.40{\times}10^9g{\cdot}C/yr$로 62.9% 줄었다. 따라서 보건설 이후 2015년까지 $9.14{\times}10^9g{\cdot}C$, 즉 매년 약 $1.83{\times}10^9g{\cdot}C$의 유기물이 하상에 축적되었을 것으로 추정된다.

Keywords

References

  1. Berg, J.A. and R.I.E. Newell, 1986. Temporal and spatial variations in the composition of seston available to the suspension feeder Crassostrea virginica. Estuar. Coast. Shelf Sci., 23: 375-386. https://doi.org/10.1016/0272-7714(86)90034-X
  2. Bowszys, M., J.A. Dunalska and B. Jaworska, 2014. Zooplankton response to organic carbon level in lakes of differing trophic states. Knowledge and Management of Aquatic Ecosystems, 412: 10.
  3. Cho, Y.G. and K.Y. Park, 1998. Heavy metals in surface sediments of the Youngsan Estuary, West Coast of Korea. J. Environ. Sci., 7(4): 549-557.
  4. Cole, J.J., Y.T. Prairie, N.F. Caraco, W.H. McDowell, L.J. Tranvik, R.G. Striegl, C.M. Duarte, P. Kortelainen, J.A. Downing, J.J. Middelburg and J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems, 10: 171-184.
  5. Degens, E.T., 1982. Transport of Carbon and Minerals in Major World River part 1. University of Hamburg, German.
  6. Eppley, R.W., W.G. Harrison, S.W. Chisholm and E. Stuart, 1977. Particulate organic matter in surface waters off Southern California and its relationship to phytoplankton. Journal of Marine Research, 35: 671-696.
  7. Hedges, J.I., 1992. Global biogeochemical cycles: progress and problems. Mar. chem., 39: 67-93. https://doi.org/10.1016/0304-4203(92)90096-S
  8. Hope, D., M.F. Billett and M.S. Cresser, 1994. A review of the export of carbon in river water: fluxes and processes. Environ. pollu., 84(3): 301-324. https://doi.org/10.1016/0269-7491(94)90142-2
  9. Jang, C.W., J.K. Kim, D.H. Kim, B.C. Kim and J.H. Park, 2008. The Distribution of Organic Carbon and its Decomposition Rate in the Kum River, Korea. J. Korean Soc. Water Environ., 24(2): 174-179.
  10. Jeong, B.K., Y.J. Kim, S.W. Jung, H.Y. Lee and Y.S. Shin, 2014. Original article : temporal variation and identification of a centric diatom, stephanodiscus spp. during winter-spring blooms in the Yeongsan River. Korean J. limnol., 47(4): 273-281.
  11. Jung, S.J., D.J. Lee, K.S. Hwang, K.H. Lee, K.C. Choi, S.S. Im, Y.H. Lee, J.Y. Lee and B.J. Lim, 2012. Evaluation of pollutant characteristics in Yeongsan River using multivariate analysis. Korean J. limnol., 45(4): 368-377. https://doi.org/10.11614/KSL.2012.45.4.368
  12. Kang, S.A. and K.G. An, 2006. Spatio-temporal variation analysis of physico-chemical water quality in the Yeongsan-River watershed. Korean J. Limnol., 39(1): 73-84.
  13. Kim, B.C., S.M. Jung, C.W. Jang and J.K. Kim, 2007. Comparison of BOD, COD and TOC as the indicator of organic matter pollution in streams and reservoirs of Korea. J. Kor. Soc. of Environ. Eng., 29(6): 640-643.
  14. Kim, J.K., M.S. Shin, C.W. Jang, S.M. Jung and B.C. Kim, 2007. Comparison of TOC and DOC distribution and the oxidation efficiency of BOD and COD in several reservoirs and rivers in the Han River system. J. Korean Soc. on Water Quality, 23(1): 72-80.
  15. Kim, K.S. and N.I. Lee, 2003. Estimation of pollution loads flowing into Mokpo harbour - centering on pollution loads from land in dry case -. J. Korean Soc. for Marine Environ. and Energy, 6(1): 11-20.
  16. Kim, K.Y., B.C. Kim, J.S. Eom, Y.S. Choi, C.W. Jang and H.K. Park, 2009. The distribution of POC and DOC in four reservoirs on the North Han River and the relationship with algal density. J. Korean Soc. Water Environ., 25(6): 840-848.
  17. Kim, T.W. and K.I. Gil, 2011. Runoff characteristics of refractory organic matters from Kyongan River Watershed during rainfall event and dry season. J. Korean Soc. Water Environ., 27(4): 397-404.
  18. Ko, D.G., J.W. Choi, B.J. Lim, J.H. Park, and K.G. An, 2012. Fish distribution, compositions and community structure characteristics during Juksan-Weir construction in Yeongsan River Watershed. Kor. J. Env. Eco., 26(6): 892-901.
  19. Kwon, K.Y., C.H. Moon, C.K. Kang and Y.N. Kim, 2002. Distribution of particulate organic matters along the salinity gradients in the Seomjin River Estuary. J. Korean Fish. Soc., 35(1): 86-96.
  20. Lee, J.H., J.H. Han, B.J. Lim, J.H. Park, J.K. Shin and K.G. An, 2013. Comparative analysis of fish fauna and community structures before and after the artificial weir construction in the mainstreams and tributaries of Yeongsan River Watershed. Korean j. Eco. and env., 46(1): 103-115. https://doi.org/10.11614/KSL.2013.46.1.103
  21. Lee, K.Y., J.E. Kim, K.C. Lee, K.L. Lee, I.J. Lee and T.H. Im, 2013. Characteristics of changes in DOC concentration according to concentrations of organic matter and suspended solids in the Nakdong River. J. Korean Soc. Water Environ., 29(4): 540-550.
  22. Lim, H.S. and K.Y. Park, 1998. Community structure of the macrobenthos in the soft bottom of Yongsan River Estuary, Korea 2. The occurrence of summer hypoxia and benthic community. J. Korean Fish. Soc., 31(3): 343-352.
  23. Ludwing, W., J.L. Probst and S. Kempe, 1996. Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles, 10: 23-41. https://doi.org/10.1029/95GB02925
  24. Malcolm, R.L., 1990. The uniqueness of humic substances in each of soil, stream and marine environments. Analytica Chimica Acta, 232: 19-30. https://doi.org/10.1016/S0003-2670(00)81222-2
  25. Meybeck, M., 1982. Carbon, nitrogen, and phosphorus transport by world river. Am. J. Sci, 282(4): 401-450. https://doi.org/10.2475/ajs.282.4.401
  26. MLTM (Ministry of land, transport, and maritime affairs), 2010. Suspended Particulate Matter and chlorophyll.
  27. Oh, S.J., S.H. Woo, J. Hur, M.S. Jung and H.S. Shin, 2009. Changes in Dissolved Organic Matter Composition in the Namhan River during a Heavy Rain Event. J. Korean Soc. Water Environ., 25(5): 697-703.
  28. Opsahl, S. and R. Benner, 1997. Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature, 386(6624): 480. https://doi.org/10.1038/386480a0
  29. Park, C.S. and K.G. An, 2014. Fish Passage Assessments in the Fishway of Juksan Weir Constructed in the Downstream Area of Youngsan-River Watershed. J. Environ. sci. international, 23(8): 1513-1522. https://doi.org/10.5322/JESI.2014.23.8.1513
  30. Park, J.K., E.S. Kim, K.T. Kim, S.R. Cho and Y.C. Park, 2006. Organic carbon behavior and distribution in the MankyoungRiver Estuary. J. Kor. soc. Mar. Environ. Eng., 9(3): 131-140.
  31. Parks, S.J. and L.A. Baker, 1997. Sources and transport of organic carbon in an Arizona River-Reservoir system. Water Research, 31(7): 1751-1759. https://doi.org/10.1016/S0043-1354(96)00404-6
  32. Ryu, D.K., S.D. Bae, J.Y. Jang, J.C. Park and J.K. Ryu, 2006. A study on the Water quality indicators of total maximum daily load management in Nakdong River -focused TOC organic-. Korean Soc. of Water Quality, 1181-1188.
  33. Seong, J.U. and J.C. Park, 2012. Effects of sewage effluent on organic matters of Nakdong River: comparison of daily loading. Kor. j. limnol., 45(2): 210-217.
  34. Shin, S.E., S.T. Youn, Y,K. Koh and K.H. Oh, 2015. The geochemical characteristics and environmental changes of surface sediments in Yeongsan River Area. J. the Korean Geomorphological Association, 22(3): 31-42.
  35. Son, M.S., J.H. Park, C.H. Lim, S.K. Kim and B.J. Lim, 2013. Seasonal change of phytoplankton community and water quality in Yeongsan River Watershed. Korean J. Environ. Biol., 31(2): 105-112. https://doi.org/10.11626/KJEB.2013.31.2.105
  36. Song, J.J., B.B. Kim and Y.J. Le, 2015. Water quality change with submerged weir of Yeongsan River. J. of Korean Soc. of Environ. Technology, 16(1): 64-70.
  37. Thurman, E.M., 1983. Multidisciplinary research-an experiment. Environ. Sci. Technol., 17(11): 511-511. https://doi.org/10.1021/es00117a604
  38. Thurman, E.M., 1985. Organic geochemistry of natural waters. Martinus Nijhoff, Dr.W. Junk Publishers, Dordrecht, 497.
  39. Yang, H.G. and H.C. Choi, 2003. Estimation of water quality environment in Youngsan and Seumjin River Basins. J. the Korean Geographical Soc., 38(1): 19-31.
  40. Yi, H.H., Y.S. Shin, S.R. Yang, N.I. Chang and D.H. Kim, 2007. Size-structure and primary productivity of phytoplankton from major lakes in Sumjin and Yeongsan Watershed. Korean J. limnol., 40(3) 419-430.
  41. Youn, S.T., Y.K. Koh, K.H. Oh, B.C. Moon and H.G. Kim, 2003. Water quality assesment of the lower Yeongsan River system. J. environ. impact assessment, 12(4): 259-270.
  42. Zweifel, U. L., J. Wikner, A. Hagstrom, E. Lundberg and B. Norrman, 1995. Dynamics of dissolved organic carbon in a coastal ecosystem. Limnology and Oceanography, 40(2):299-305. https://doi.org/10.4319/lo.1995.40.2.0299