DOI QR코드

DOI QR Code

Evaluation of Fire Characteristics for Particle-board with Exfoliated Graphite Nanoplatelets Added

탄소재료의 적용 방법에 따른 파티클 보드의 연소 특성

  • Seo, Hyun Jeong (Dept. of Safety Engineering, College of Engineering, Incheon National Univ.) ;
  • Jo, Jeong Min (Dept. of Safety Engineering, College of Engineering, Incheon National Univ.) ;
  • Hwang, Wuk (Dept. of Safety Engineering, College of Engineering, Incheon National Univ.) ;
  • Lee, Min Chul (Dept. of Safety Engineering, College of Engineering, Incheon National Univ.)
  • 서현정 (인천대학교 안전공학과) ;
  • 조정민 (인천대학교 안전공학과) ;
  • 황욱 (인천대학교 안전공학과) ;
  • 이민철 (인천대학교 안전공학과)
  • Received : 2017.03.02
  • Accepted : 2017.09.08
  • Published : 2017.12.30

Abstract

This study was conducted to evaluate the fire retardant performance of exfoliated graphite nanoplatelets (xGnP) applied for particleboard. This work measured heat release rate(HRR), total heat release(THR) and smoke production rate(SPR) of xGnP added particleboard, using cone calorimeter to assess its fire characteristics according to the KS F ISO 5660-1 standard code. Heat release rates of all specimens treated by xGnP were less than the $200kW/m^2$ for a total experiment period of five minutes. Heat release rates of the specimens coated with xGnP were lower than those of the specimens made by mixing wood particles with xGnP directly. Meanwhile, the total heat release rates of xGnP coated specimen maintained quite lower level than the uncoated so the xGnP coating were effective in improving the fire retardant performance of particleboard. However, the smoke emission peaking problem at the initial combustion period, which was caused by adding base coating materials, should be resolved for further satisfaction as a fire retardant materials.

Keywords

References

  1. S.J. Kang, K.J. Kim, M.S. Kim, and B.J. Kim et al, Application Handbook of carbon materials (1sted.), Publisher Daeyoung, Seoul, 2008, 715.
  2. B. Dittrich, K.A. Wartig, D. Hofmann, R. Mulhaupt B. Schartel, Flame retardancy through carbon nanomaterials: Carbon black, multiwall nanotubes,expanded graphite, multi-layer graphene and graphene in polypropylene, Polym. Degrad. Stabli., 98 (2013) 1-11. https://doi.org/10.1016/j.polymdegradstab.2012.11.014
  3. T. Kamae, L.T. Drzal, Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fiber-matrix interphase- Part I: The development of carbon nanotube coated carbon fibers and the evaluation of their adhesion, Compos. A., 43(9) (2012) 1569-1577. https://doi.org/10.1016/j.compositesa.2012.02.016
  4. S. Stankovich, D.A. Dikin, G.H.B. Dommett, L. M. Kohlhaas, E.J. Zimney, E.A. Stach, Graphenebased composite materials, Nature., 442 (2006) 282-286. https://doi.org/10.1038/nature04969
  5. S. Virendra, J. Daeha, Z. Lei, D. Soumen, I.K. Saiful, S. Sudipta, Graphene based materials: Past, present and future, Prog. Mater. Sci., 56 (2011) 1178-1271. https://doi.org/10.1016/j.pmatsci.2011.03.003
  6. V. Babrauskas, Development of the Cone Calorimeter - A Bench-scale Heat Release Rate Apparatus Based on Oxygen Consumption, Fire and Materials. 8(2) (1983) 81-95. https://doi.org/10.1002/fam.810080206
  7. J. Rychly, M. Hudakova, L. Rychla, K. Csomorova, The rate of oxygen consumption from a cone calorimeter as an original criterion of evaluation of the fire risk for the Resin Kit polymers, Eur. j. environ. saf. sci., 2(2), (2014) 23-27.
  8. H. Fukushima and L. T. Drzal, A carbon nanotube alternative: graphite nanoplatelets as reinforcements for polymers, ANTEC 2003 Conference Proceedings, 2003, 2230-2234.
  9. S. Kim, L.T. Drzal, High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets, Sol, Energy, Mater, Sol, C., 93 (2009) 136-142. https://doi.org/10.1016/j.solmat.2008.09.010
  10. J.I. Kim, M.R. Kang, D.W. Son and S.B. Park, Evaluation of flame retardant performance of retardant-treated wood by inorganic flame retardant, J, Kor, Wood, Sci, Technol., Spring Annual Conference, 2012, 56-57.
  11. S. Lee, D. Cho, L.T. Drzal, Realtime observation of the expansion behavior of intercalated graphite flake, J, Mater, Sci., 40 (2005) 231-234. https://doi.org/10.1007/s10853-005-5715-0
  12. J.J. Mack, L.M. Viculis, A. Ali, R. Luoh, G. Yang, H.T. Hahn, F.K. Ko, R.B. Kaner, Graphite nanopletelet reinforcement of electrospun polyacrylonitrile nanofibers, Adv, Mater., 17 (2005) 77-80. https://doi.org/10.1002/adma.200400133
  13. Y.F. Zhao, M. Xiao, S.J. Wang, X.C. Ge, Y.Z. Meng, Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites, Compos, Sci, Technol., 67 (2007) 2528-2534. https://doi.org/10.1016/j.compscitech.2006.12.009
  14. S. Ansari, E.P. Giannelis, Functionalized graphene sheetpoly(vinylidene fluoride) conductive nanocomposites, J, Polym, Sci, B, Polym. Phys., 47 (2009) 888-897. https://doi.org/10.1002/polb.21695
  15. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M.H. Alonso, R.D. Piner, Functionalized graphene sheets for polymer nanocomposites, Nat, Nanotechnol., 3 (2008) 327-331. https://doi.org/10.1038/nnano.2008.96
  16. H.J. Seo, S. Kim, D.W. Son, The Evaluation of the Flame Retardant Performance of the Wood-based Building Materials Applied to Carbon Materials, J, Kor, Soc, Living, Environ, 21(5) (2014) 855-861. https://doi.org/10.21086/ksles.2014.10.21.5.855
  17. H.J. Seo, S. Kim, D.W. Son, S.B. Park, Review on enhancing flame retardant performance of building Materials using carbon nanomaterials, J, Kor, Soc, Living, Environ, 20(4) (2013) 514-526.
  18. Y. Park, B. Jun, J. Seo, S. Kim, The Improvement of Thermal Conductivity of wood-based Panel for Laminated Flooring Used the Exfoliated Graphite for Heating Energy Conservation, J, Kor, Soc, Living, Environ, 18(6), (2011) 650-655.
  19. S.W. Moon, K.B. Lim, D.H. Rie, A Study on the fire prevention performance evaluation of the wood impregnated with flame retardant, J. Kor. Institute of Fire Sci. & Eng., Spring Annual Conference, 321-324 (2011).
  20. H.J. Park, S.M. Lee, Combustion characteristics of spruce wood by pressure impregnation with water glass and carbon dioxide, J. Kor. Institute of Fire Sci. & Eng., 26(4), (2012) 18-23. https://doi.org/10.7731/KIFSE.2012.26.4.018
  21. J.M. Choi, A study on combustion characteristics of fire retardant treated pinus densiflora and pinus koraiensis, J, Kor, Wood, Sci, Technol., 39(3), (2011) 244-251. https://doi.org/10.5658/WOOD.2011.39.3.244
  22. D.W. Son, M.R. Kang, D.H. Lee, S.B. Park, Decay resistance and anti-mold efficacy of wood treated with fire retardants, J, Kor, Wood, Sci, Technol., 41(6), (2013) 559-565. https://doi.org/10.5658/WOOD.2013.41.6.559
  23. S.C. Kim, D.G. Nam, Fire Characteristics of Flaming and Smoldering Combustion of Wood Combustibles Considering Thickness, Fire Sci. Eng., 29(4), (2015) 67-72. https://doi.org/10.7731/KIFSE.2015.29.4.067
  24. Y.J. Chung, Combustion Chracteristics of Veneers Treated by Ammonium Salts, J. Korean Ind. Eng. Chem., 18(2) (2007) 194-198.
  25. J. Lindholm, A. Brink, M. Hupa, Influence of decreased sample size on cone calorimeter results, Fire Mater, 36, (2012) 63-73. https://doi.org/10.1002/fam.1087
  26. H.J. Seo, W. Hwang, M.C. Lee, Combustion Characteristics of Fire Retardants Treated Domestic Wood, J. Korean Soc. Combust. 22(2), (2017) 14-23.
  27. L.A. Lowden, T.R. Hull, Flammability behavior of wood and a review of the methods for its reduction, Fire. Sci. Rev., 2(4) (2013) 1-19. https://doi.org/10.1186/2193-0414-2-1
  28. C. Branca, C.D. Blasi, 2011. Semi-global mechanisms for the oxidation of diammonium phosphate impregnated wood, J. Anal. Appl. Pyrolysis., 91 (1) (2011) 97-104. https://doi.org/10.1016/j.jaap.2011.01.008
  29. W.F. Walter, B. Heinrich, M. Washington, J.K. Hermanus, L. Dewan, Characterization of commercial expandable graphite fire retardants, Thermochimica Acta, 584, (2014) 8-16. https://doi.org/10.1016/j.tca.2014.03.021
  30. Z.X. Zhang, J. Zhang, B. Lu, Z.X. Xin, C.K. Kang, J.K. Kim, Effect of flame retardants on mechanical properties, flammability and foamability of PP/wood-fiber composites, Compos. Part A. Appl. Sci. Manuf., 43, (2012) 150-158. https://doi.org/10.1016/j.compositesa.2011.10.001
  31. H. Fukushima, L.T. Drzal, B.P. Rook, M.J. Rich, Thermal conductivity of exfoliated graphite nanocomposites, J. Therm. Anal. Calorim., 85, (2006) 235-238. https://doi.org/10.1007/s10973-005-7344-x
  32. B. Li, Influence of polymer additives on thermal decomposition and smoke emission of poly(vinyl chloride), Polym. Degrad. Stabil., 82(3), (2003) 467-476. https://doi.org/10.1016/S0141-3910(03)00201-5
  33. B.H. Lee, H.S. Kim, S. Kim, H.J. Kim, B.W. Lee, Y. Deng, Q. Feng, J. Luo, Evaluating the flammability of wood-based panels and gypsum particleboard using a cone calorimeter, Constr. Build. Mater., 25(7), (2011) 3044-3050. https://doi.org/10.1016/j.conbuildmat.2011.01.004
  34. A.P. Mouritz, Z. Mathys, A.G. Gibson, Heat release of polymer composites in fire, Compos. Part A. Appl. Sci. Manuf., 37(7), (2006) 1040-1054. https://doi.org/10.1016/j.compositesa.2005.01.030
  35. A.F. Bettencourta, C.B. Neves, M.S. de Almeida, L.M. Pinheiro, S.A. Oliveira, L.P. Lopes, M.F. Castro, Biodegradation of acrylic based resins: A review, Dent. Mater., 26, (2010) 171-180. https://doi.org/10.1016/j.dental.2010.01.006
  36. J.H. Lee, J. Kim, S. Kim, J.T. Kim, Thermal Extractor Analysis of VOCs Emitted from Building Materials and Evaluation of the Reduction Performance of Exfoliated Graphite Nanoplatelets, Indoor. Built. Environ., 22(1) (2014) 68-76. https://doi.org/10.1177/1420326X12470411
  37. H.J. Seo, S.G. Jeong, S. Kim, Development of thermally enhanced wood-based materials with high VOCs adsorption using exfoliated graphite nanoplatelets for use as building materials, Bioresources, 10(4) (2015) 7081-7091.
  38. C.E. Byrne, D.C. Nagle, Carbonization of wood for advanced materials applications, Carbon 35(2) (1997) 259-266. https://doi.org/10.1016/S0008-6223(96)00136-4
  39. H.J. Seo, M.R. Kang, D.W. Son, Combustion Properties of Woods for Indoor Use (II). J. Korean Wood Sci. Technol., 43(4) (2015) 478-485. https://doi.org/10.5658/WOOD.2015.43.4.478
  40. H.J. Seo, M.R. Kang, J.E. Park, D.W. Son, Combustion Characteristics of Useful Imported Woods, J. Korean Wood Sci. Technol., 44(1), (2016) 19-29. https://doi.org/10.5658/WOOD.2016.44.1.19