DOI QR코드

DOI QR Code

Antioxidant and anti-inflammatory activities of extracts from Ledum palustre L.

백산차 추출물의 항산화 및 항염증 활성

  • Kim, Se Gie (Department of Pharmaceutical Science and Technology, Daegu Catholic University)
  • 김세기 (대구가톨릭대학교 제약산업공학전공)
  • Received : 2017.11.10
  • Accepted : 2017.11.20
  • Published : 2017.11.30

Abstract

In this study, Ledum palustre L. was extracted by 4 different methods (LPW, hot water extraction; LPA, autoclave extraction; LPU, ultrasonification extraction; LPE, 70% ethanol extraction) and LPE was fractionated by using polarity difference of each solvent and used as 4 samples (LPE/H, the n-hexane layer; LPE/E, the EtOAc layer; LPE/B, the n-BuOH layer; LPE/W, the $H_2O$ layer). Antioxidant activities of Ledum palustre L. extracts were measured by DPPH and ABTS. As a result, the DPPH and ABTS radical scavenging showed high activities with LPE (82.3%, 99.8%) and LPE/E (91.8%, 99.6%) at the concentration of $1,000{\mu}g/mL$. The anti-inflammatory activities of LPE and LPE/E were measured by the inhibitory activity against NO, $PGE_2$, TNF-${\alpha}$, IL-$1{\beta}$ and IL-6 production on LPS-stimulated Raw 264.7 macrophages. As a result of MTT assay, cell viabilities of LPE and LPE/E were more than 90% at $25{\mu}g/mL$. NO and $PGE_2$ productions were inhibited by LPE (NO: 50%, $PGE_2$: 70%) and LPE/E (NO: 57%, $PGE_2$: 73%) at the concentration of $25{\mu}g/mL$. The inhibition activities against TNF-${\alpha}$, IL-$1{\beta}$, IL-6 production were 24%, 47% and 40% at the concentration of $25{\mu}g/mL$ of LPE. In particular, LPE/E showed 51%, 57% and 62% inhibition activities at the same concentration, respectively. From the above results, it can be concluded that $1,000{\mu}g/mL$ of LPE and LPE/E have the high antioxidant activities similar with Vitamin C, and $25{\mu}g/mL$, the low concetration of LPE and LPE/E have excellent anti-inflammatory activities. Therefore, if more research about anti-aging, whitening and antimicrobial activity of Ledum palustre L. extracts is carried out in the future, it will be possible to use them as effective materials for the prevention and treatment of inflammatory diseases and in the areas of functional foods and cosmetics.

본 연구에서는 백산차추출물의 항산화 활성을 알아보기 위해 추출방법을 달리한 4가지 추출물인 열수추출물(LPW), 고온가압추출물(LPA), 초음파추출물(LPU), 70% 에탄올 추출물추출(LPE)과 LPE에 대한 4가지 용매 층 분획물인 n-hexane 층(LPE/H), ethyl acetate 층(LPE/E), n-butanol 층(LPE/B), water 층(LPE/W) 분획물의 DPPH와 ABTS 라디칼 소거 활성을 측정하였다. 또한 백산차 추출물의 항염활성을 알아보기 위해 LPS로 자극된 Raw 264.7 대식세포에서 LPE와 LPE/H, LPE/E, LPE/B, LPE/W의 NO, $PGE_2$, TNF-${\alpha}$, IL-$1{\beta}$, IL-6의 생성 저해 활성을 측정하였다. 그 결과, DPPH와 ABTS 라디칼 소거 활성에서 LPE가 $1,000{\mu}g/mL$의 농도에서 각각 82.3%와 99.8%의 소거 활성을 나타내었으며, LPE/E의 경우 $1,000{\mu}g/mL$의 농도에서 각각 91.8%와 99.6%의 높은 소거 활성을 나타내었다. 항염 활성 확인을 위하여 먼저 MTT assay를 수행하였으며 $25{\mu}g/mL$ 농도에서 LPE와 LPE/E 모두 90% 이상의 세포 생존율이 확인되었다. NO와 $PGE_2$의 생성 저해 활성을 분석한 결과, LPE와 LPE/E에서 높은 NO와 $PGE_2$ 저해 활성을 확인 하였다. LPE는 $25{\mu}g/mL$의 농도에서 각각 50%와 70%의 저해 활성을 나타내었고 LPE/E는 같은 농도에서 각각 57%와 73%의 저해 활성을 나타내었다. 마지막으로 TNF-${\alpha}$, IL-$1{\beta}$, IL-6의 생성 저해 활성을 측정한 결과 LPE 및 LPE/E의 농도의존적인 저해 활성을 확인 하였으며 LPE가 $25{\mu}g/mL$의 농도에서 각각 24%, 47%, 40%의 저해 활성을 나타내었다. 특히 LPE/E는 같은 농도에서 각각 51%, 57%, 62%의 높은 저해활성을 보였다. 이러한 결과들로부터 $1,000{\mu}g/mL$ 농도의 LPE 및 LPE/E는 비타민C와 유사한 DPPH 및 ABTS 라디칼 소거능을 가지며 비교적 낮은 농도인, $25{\mu}g/mL$ 농도에서도 높은 항염증 활성을 가지고 있는 것으로 결론을 내릴 수 있다. 따라서 추후 항노화, 항균, 미백 활성 등에 대한 더 많은 연구 진행이 이루어진다면 백산차추출물은 염증성 질환의 예방 및 치료와 기능성 식품, 화장품 분야 등에서 효과적인 소재로 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. Azuma K, Nakayama M, Koshioka M, Ippoushi K, Yamaguchi Y, Kohata K, Yamauchi Y, Ito H, Higashio H (1999) Phenolic antioxidants from the leaves of Corchorus olitorius L. J Agric Food chem, 47, 3963-3966 https://doi.org/10.1021/jf990347p
  2. Kawashima S (1969) The possible role of lipoperoxide in aging. Nagoya J Med Sci, 32, 303-326
  3. Decker EA, Crum AD, Calvert JT (1992) Differences in the antioxidant mechanism of carnosine in the presence of copper and iron. J Agric Food Chem, 40, 756-759 https://doi.org/10.1021/jf00017a009
  4. Jeong SI, Kim HS, Jeon IH, Kang HJ, Mok JY, Cheon CJ, Yu HH, Jang SI (2014) Antioxidant and anti-inflammatory effects of ethanol extracts from Perilla frutescens. Korean J Food Sci Technol, 46, 87-93 https://doi.org/10.9721/KJFST.2014.46.1.87
  5. Aniya Y, Naito A (1993) Oxidative stress-induced activation of microsomal glutathione S-transferase in isolated rat liver. Biochem Pharmacol, 45, 37-42 https://doi.org/10.1016/0006-2952(93)90374-6
  6. Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol, 186, 1-85
  7. Khalid OA (2009) Oxidant/Antioxidant status in obese adolescent females with Acne Vulgaris. Indian J Dermatol, 54, 36-40 https://doi.org/10.4103/0019-5154.48984
  8. Kwon MJ, Kim BH, Lee YS, Kim TY (2012) Role of superoxide dismutase 3 in skin inflammation. J Dermatol Sci, 67, 81-87 https://doi.org/10.1016/j.jdermsci.2012.06.003
  9. Ozer A, Ergul BK, Sezai S (2005) Oxidative Stress in Patients With Acne Vulgaris. Mediators Inflamm, 14, 380-384
  10. Kim SG, Byun HD, Kim SC, Yang KW, Kim JH, Han JH (2015) Antioxidative and Anti-inflammatory Activities of Carrot flower. Korean Soc Biotechnol Bioeng J, 30, 77-81
  11. Jeong SJ, Lee JH, Song HN, Seong NS, Lee SE, Baeg NI (2004) Screening for antioxidant activity of plant medicinal extracts. J Korean Soc Appl Biol Chem, 47, 135-140
  12. Kang IH, Cha JH, Han JH, Lee SW, Kim HJ, Kwon SH, Han IH, Hwang BS, Whang WK (2005) Isolation of anti-oxidant from domestic crataegus pinnatifida bunge leaves. Kor J Pharmacogn, 36, 121-128
  13. Huang MT, Ho CT, Lee CY (1992) Phenolic compounds in food and their effects on health II: Antioxidants and cancer prevention. American Chemical Society (ACS), Washington DC, USA, p 54-71
  14. Hogquist KA, Baldwin TA, Jameson SC (2005) Central tolence: learning self-control in the thymus. Nat Rev Immunol, 5, 772-782 https://doi.org/10.1038/nri1707
  15. Baek S, Choi JH, Ko SH, Lee YJ, Cha DS, Park EY, Kang YG, Jeon H (2009) Antioxidant and antiinflammatory effect of Nardostachys Chinensis in IFN-${\gamma}$/LPS-stimulated peritoneal macrophage. Kor J Ori Med Physiol Pathol, 23, 853-859
  16. Ryu JH, Ahn HN, Kim JY, Kim YK (2003) Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophage. Phytother Res, 17, 485-489 https://doi.org/10.1002/ptr.1180
  17. Yayeh T, Jung KH, Jeong HY, Park JH, Song YB, Kwak YS, Kang HS, Cho JY, Oh JW, Kim SK, Rhee MH (2012) Korean red ginseng saponin fraction down regulates pro-inflammatory mediators in LPS stimulated RAW264.7 cells and protects mice against endotoxic shock. J Ginseng Res, 36, 263-269 https://doi.org/10.5142/jgr.2012.36.3.263
  18. Oh SH, Choi SY, Lee NR, Lee JN, Kim DS, Lee SH, Park SM (2014) Cell migration and anti-inflammatory effect of red ginseng extracts fermented with laetiporus sulphureus. J Soc Cosmet Sci Korea, 40, 297-305
  19. Willeaume V, Kryus V, Mijatovic T, Huez G (1996) Turmor necrosis factor-alpha production induced by viruses and by lipopolysaccharides in macrophages : similarities and differences. J Inflammation, 46, 1-12
  20. Narimanov AA (1992) The reproductive capacity of male mice protected against the superlethal action of gamma radiation by the administration of a mixture of Archangelica officinalis and Ledum palustre extracts. Radiobiologiia, 32, 271-275
  21. Narimanov AA, Miakisheva SN, Kuznetsova SM (1991) The radioprotective effect of extracts of Archangelica officinalis Hoffm. and Ledum palustre L. on mice. radiobiologiia, 31, 391-393
  22. Jaeson TGT, Palsson K, Borg-kalson AK (2005) Evaluation of extracts and oils of tick-repellent plants from Sweden. Med Vet Entomol, 19, 345-352 https://doi.org/10.1111/j.1365-2915.2005.00578.x
  23. Kuusik A, Harak M, Hiiesaar K, Metspalu L, Tartes U (1995) Studies on insect growth regulating and toxic effects of Ledum palustre extracts on Tenebrio molitor pupae (Coleoptera, Tenebrionidae) using calorimetric recordings. Thermochimica Acta, 251, 247-253 https://doi.org/10.1016/0040-6031(94)02048-S
  24. Palsson K, Jaenson TGT (1999) Plant products used as mosquito repellents in Guinea Bissau, West Afica. Acta Tropica, 72, 39-52 https://doi.org/10.1016/S0001-706X(98)00083-7
  25. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  26. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med, 26, 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  27. Kim OK (2005) Antidiabetic and antioxidative effects of Corni fructus in streptozotocin-induced diabetic rats. J Korean Oil Chemists' Soc, 22, 157-167
  28. Kim HK, Kim YE, Do JR, Lee YC, Lee BY (1995) Antioxidative activity and hysiological activity of some Korean medicinal plants. J Food Sci Technol, 27, 80-85
  29. Kim JS, Kim KL (2015) Anti-oxidative and antiinflammatory effects of Artemisiae Capillaris extract. Kor J Aesthet Cosmetol, 13, 805-812
  30. Arnao MB (2000) Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends Food Sci Technol, 11, 419-421 https://doi.org/10.1016/S0924-2244(01)00027-9
  31. Kwon YR, Youn KS (2017) Antioxidant and physiological activities of Hijikia fusiforme by extraction methods. Korean J Food Preserv, 24, 631-637 https://doi.org/10.11002/kjfp.2017.24.5.631
  32. Kang JR, Kang MJ, Shin JH, Park JH, Kim DI, Chung SY, Shin JH (2017) Antioxidant and antidiabetic activities of various solvent extracts from Stachys sieboldii Miq. Korean J Food Preserv, 24, 615-622 https://doi.org/10.11002/kjfp.2017.24.5.615
  33. Cho YJ (2017) Inhibitory effect of Koreinsis chinensis leaves extract on proinflammatory responses in lipopolysaccharide-induced Raw 264.7 cells. J Appl Biol Chem, 60, 191-198
  34. Nam JH, Seo JT, Kim YH, Kim KD, Yoo DL, Lee JN, Hong SY, Kim SJ, Sohn HB, Kim HS, Kim BS, Lee KT, Park HJ (2014) Inhibitory effects of extracts from Smilacina japonica on lipopolysaccharide induced nitric oxide and prostaglandin $E_{2}$ production in RAW 264.7 macrophages. J Plant Biotechnol, 41, 201-205 https://doi.org/10.5010/JPB.2014.41.4.201
  35. Nam JH, Kim HS, Kim BJ, Yu HS, Chang DC, Jin YI, Yoo DL, Choi JK, Park HJ, Lee SB, Lee KT, Park SJ (2017) In vitro anti-inflammatory activity of extracts from Potentilla supina in murine macrophage RAW 264.7 cells. J Plant Biotechnol, 44, 76-81 https://doi.org/10.5010/JPB.2017.44.1.076
  36. Seo SJ, Choi HG, Chung HJ, Hong CK (2002) Time course of expression of mRNA of inducible nitric oxide synthase and generation of nitric oxide by ultraviolet B in keratinocyte cell lines. Br J Dermatol, 147, 655-662 https://doi.org/10.1046/j.1365-2133.2002.04849.x
  37. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol Rev, 43, 109-142
  38. Van SJ (1990) Interleukin-6 : An overview. Annu Rev Immunol, 8, 253-278 https://doi.org/10.1146/annurev.iy.08.040190.001345
  39. Delgado AV, McManus AT, Chambers JP (2003) Production of tumor necrosis factor-${\alpha}$, interleukin 1-${\beta}$, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P Neuropeptides, 37, 355-361 https://doi.org/10.1016/j.npep.2003.09.005
  40. Maes M (2008) The cytokine hypothesis of depression: Inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuroendocrinol Lett, 29, 287-291
  41. Taddesse Y, Oh WJ, Park SC, Kim TH, Cho JY, Park HJ, Lee IK, Kim SK, Hong SB, Yun BS, Rhee MH (2011) Phellinus baumii ethyl acetate extract inhibits lipopolysaccharide-induced iNOS, COX-2, and proinflammatory cytokine expression in RAW264.7 cells. J Nat Med, 66, 49-54