DOI QR코드

DOI QR Code

Variations in carbon and nitrogen stable isotopes and in heavy metal contents of mariculture kelp Undaria pinnatifida in Gijang, southeastern Korea

  • Shim, JeongHee (Fisheries Resources and Environment Research Division, East Sea Fisheries Research Institute, NIFS) ;
  • Kim, Jeong Bae (Marine Environment Research Division, NIFS) ;
  • Hwang, Dong-Woon (Marine Environment Research Division, NIFS) ;
  • Choi, Hee-Gu (Marine Environment Research Division, NIFS) ;
  • Lee, Yoon (Fisheries Resources and Environment Research Division, East Sea Fisheries Research Institute, NIFS)
  • Received : 2017.08.17
  • Accepted : 2017.12.03
  • Published : 2017.12.15

Abstract

Korean mariculture Undaria pinnatifida was collected during the months of January, February, March, and December of 2010, as well as from January of 2011 to investigate the changes in the carbon and nitrogen stable isotope ratios (${\delta}^{13}C$ and ${\delta}^{15}N$) and heavy metal with respect to it growth and to identify the factors that influence such changes. The blades of U. pinnatifida showed ${\delta}^{13}C$ and ${\delta}^{15}N$ in the range (mean) of -13.11 to -19.42‰ (-16.93‰) and 2.99 to 7.57‰ (4.71‰), respectively. Among samples with the same grow-out period, those that weighed more tended to have higher ${\delta}^{13}C$ suggesting a close association between the carbon isotope ratio and growth rate of U. pinnatifida. Indeed, we found a very high positive linear correlation between the monthly average ${\delta}^{13}C$ and the absolute growth rate in weight ($r^2=0.89$). Nitrogen isotope ratio tended to be relatively lower when nitrogen content in the blade was higher, probably due to the strengthening of isotope fractionation stemming from plenty of nitrogen in the surrounding environment. In fact, a negative linear correlation was observed with the nitrate concentration in the nearby seawaters ($r^2=0.83$). Concentrations of Cu, Cd, Pb, Cr, Hg, and Fe in the blades showed a rapid decrease in their concentration per unit weight in the more mature U. pinnatifida. Specifically, compared to adult samples, Cu, Hg, and Pb were concentrated by 30, 55, and 73 folds, respectively, in the young blades. Therefore, U. pinnatifida tissue ${\delta}^{13}C$ is as an indirect indicator of its growth rate, while ${\delta}^{15}N$ values and heavy metal concentrations serve as tracers that reflect the environmental characteristics.

Keywords

References

  1. Ale, M. T., Mikkelsen, J. D. & Meyer, A. S. 2011. Differential growth response of Ulva lactuca to ammonium and nitrate assimilation. J. Appl. Phycol. 23:345-351. https://doi.org/10.1007/s10811-010-9546-2
  2. Besada, V., Andrade, J. M., Schultze, F. & Gonzalez, J. J. 2009. Heavy metals in edible seaweeds commercialised for human consumption. J. Mar. Syst. 75:305-313. https://doi.org/10.1016/j.jmarsys.2008.10.010
  3. Carvalho, M. C., Hayashizaki, K. & Ogawa, H. 2008. Environment determines nitrogen content and stable isotope composition in the sporophyte of Undaria pinnatifida (Harvey) Suringar. J. Appl. Phycol. 20:695-703. https://doi.org/10.1007/s10811-007-9271-7
  4. Carvalho, M. C., Hayashizaki, K. -I. & Ogawa, H. 2009. Carbon stable isotope discrimination: a possible growth index for the kelp Undaria pinnatifida. Mar. Ecol. Prog. Ser. 381:71-82. https://doi.org/10.3354/meps07948
  5. Carvalho, M. C., Hayashizaki, K. -I. & Ogawa, H. 2010. Temperature effect on carbon isotopic discrimination by Undaria pinnatifida (Phaeophyta) in a closed experimental system. J. Phycol. 46:1180-1186. https://doi.org/10.1111/j.1529-8817.2010.00895.x
  6. Coelho, J. P., Pereira, M. E., Duarte, A. & Pardal, M. A. 2005. Macroalgae response to a mercury contamination gradient in a temperate coastal lagoon (Ria de Aveiro, Portugal). Estuar. Coast. Shelf Sci. 65:492-500. https://doi.org/10.1016/j.ecss.2005.06.020
  7. Cornwall, C. E., Revill, A. T. & Hurd, C. L. 2015. High prevalence of diffusive uptake of CO2 by macroalgae in a temperate subtidal ecosystem. Photosynth. Res. 124:181-190. https://doi.org/10.1007/s11120-015-0114-0
  8. Dean, P. R. & Hurd, C. L. 2007. Seasonal growth, erosion rates, and nitrogen and photosynthetic ecophysiology of Undaria pinnatifida (Heterokontophyta) in southern New Zealand. J. Phycol. 43:1138-1148. https://doi.org/10.1111/j.1529-8817.2007.00416.x
  9. Drobnitch, S. T., Pochron, T. & Miranda, C. 2017. Patterns and drivers of ${\delta}^{13}C$ variation in the giant kelp, Macrocystis pyrifera. Limnol. Oceanogr. Advanced online publication. https://doi.org/10.1002/lno.10675.
  10. Kang, C. -K., Choy, E. J., Song, H. S., Park, H. J., Soe, I. -S., Jo, Q. & Lee, K. -S. 2007. Isotopic determination of food sources of benthic invertebrates in two different macroalgal habitats in the Korean coasts. The Sea 12:380-389.
  11. Kang, E. J. & Kim, K. Y. 2016. Effects of future climate conditions on photosynthesis and biochemical component of Ulva pertusa (Chlorophyta). Algae 31:49-59. https://doi.org/10.4490/algae.2016.31.3.9
  12. Kim, J. -H., Kang, E., J., Kim, K., Jeong, H. J., Lee, K., Edwards, M. S., Park, M. G., Lee, B. -G. & Kim, K. Y. 2015. Evaluation of carbon flux in vegetative bay based on ecosystem production and $CO_2$ exchange driven by coastal autotrophs. Algae 30:121-137.
  13. Kim, K. T., Jang, S. H., Kim, E. S., Cho, S. R., Park, J. K., Moon, D. S. & Kim, H. J. 2007. Distribution of dissolved trace metals in the deep oceans waters of the East Sea. J. Korean Soc. Mar. Environ. Saf. 13:1-7.
  14. Klenell, M., Snoeijs, P. & Pedersen, M. 2004. Active carbon uptake in Laminaria digitata and L. saccharina (Phaeophyta) is driven by a proton pump in the plasma membrane. Hydrobiologia 514:41-53. https://doi.org/10.1023/B:hydr.0000018205.80186.3e
  15. Lee, J. -A., Sunwoo, Y. -I., Lee, H. -J., Park, I. -H. & Chung, I. -K. 1989. The effects of copper on the early stages of Undaria pinnatifida (Harv.) Suringar (Laminariales, Phaeophyta) under temperature-irradiance gradient. Korean J. Phycol. 4:41-53.
  16. Lee, K. Y. & Sohn, C. H. 1993. Morphological characteristics and growth of two forms of sea mustard, Undaria pinnatifida f. distans and U. pinnatifida f. typica. J. Aquac. 6:71-87.
  17. Lee, R. E. 2008. Phycology. Cambridge University Press, Cambridge, pp. 504-520.
  18. Mackey, A. P., Hyndes, G. A., Carvalho, M. C. & Eyre, B. D. 2015. Physical and biogeochemical correlates of spatiotemporal variation in the ${\delta}^{13}C$ of marine macroalgae. Estuar. Coast. Shelf Sci. 157:7-18. https://doi.org/10.1016/j.ecss.2014.12.040
  19. Malea, P., Chatziapostolou, A. & Kevrekidis, T. 2015. Trace element seasonality in marine macroalgae of different functional-form groups. Mar. Environ. Res. 103:18-26. https://doi.org/10.1016/j.marenvres.2014.11.004
  20. Oakes, J. M. & Eyre, B. D. 2015. Wastewater nitrogen and trace metal uptake by biota on a high-energy rocky shore detected using stable isotopes. Mar. Pollut. Bull. 100:406-413. https://doi.org/10.1016/j.marpolbul.2015.08.013
  21. Orlandi, L., Calizza, E., Careddu, G., Carlino, P., Costantini, M. L. & Rossi, L. 2017. The effects of nitrogen pollutants on the isotopic signal (${\delta}^{15}N$) of Ulva lactuca: microcosm experiments. Mar. Pollut. Bull. 115:429-435. https://doi.org/10.1016/j.marpolbul.2016.12.051
  22. Park, H. J., Han, E., Lee, Y. -J. & Kang, C. -K. 2016. Tropic link age of a temperate intertidal microbenthic food web under opportunistic macroalgal blooms: a stable isotope approach. Mar. Pollut. Bull. 111:86-94. https://doi.org/10.1016/j.marpolbul.2016.07.026
  23. Park, K. -J., Kim, B. Y., Park, S. K., Lee, J. -H., Kim, Y. S., Choi, H. G. & Nam, K. W. 2012. Morphological and biochemical differences in three Undaria pinnatifida populations in Korea. Algae 27:189-196. https://doi.org/10.4490/algae.2012.27.3.189
  24. Peterson, B. J. & Fry, B. 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18:293-320. https://doi.org/10.1146/annurev.es.18.110187.001453
  25. Pinon-Gimate, A., Espinosa-Andrade, N., Sanchez, A. & Casas-Valdez, M. 2017. Nitrogen isotopic characterization of macroalgae blooms from different sites within a subtropical bay in the Gulf of California. Mar. Pollut. Bull. 116:130-136. https://doi.org/10.1016/j.marpolbul.2016.12.075
  26. Stengel, D. B., McGrath, H. & Morrison, L. J. 2005. Tissue Cu, Fe and Mn concentrations in different-aged and different functional thallus regions of three brown algae from western Ireland. Estuar. Coast. Shelf Sci. 65:687-696. https://doi.org/10.1016/j.ecss.2005.07.003
  27. Yun, S. -G., Yoon, B. -S., Paik, S. -G. & Kang, C. -K. 2006. The origin of organic matters utilized by soft bottom macrozoobenthos in Tongyeong. J. Korean Fish. Soc. 39:189-197.

Cited by

  1. Regional variation in δ 13 C of coral reef macroalgae vol.65, pp.10, 2017, https://doi.org/10.1002/lno.11453