DOI QR코드

DOI QR Code

Effects of disturbance timing on community recovery in an intertidal habitat of a Korean rocky shore

  • Kim, Hyun Hee (Department of Biological Sciences, Sungkyunkwan University) ;
  • Ko, Young Wook (Department of Biological Sciences, Sungkyunkwan University) ;
  • Yang, Kwon Mo (Department of Biological Sciences, Sungkyunkwan University) ;
  • Sung, Gunhee (Department of Biological Sciences, Sungkyunkwan University) ;
  • Kim, Jeong Ha (Department of Biological Sciences, Sungkyunkwan University)
  • 투고 : 2017.10.22
  • 심사 : 2017.12.07
  • 발행 : 2017.12.15

초록

Intertidal community recovery and resilience were investigated with quantitative and qualitative perspectives as a function of disturbance timing. The study was conducted in a lower intertidal rock bed of the southern coast of South Korea. Six replicates of artificial disturbance of a $50cm{\times}50cm$ area were made by clearing all visible organisms on the rocky substrate in four seasons. Each of the seasonally cleared plots was monitored until the percent cover data reached the control plot level. There was a significant difference among disturbance timing during the recovery process in terms of speed and community components. After disturbances occurred, Ulva pertusa selectively preoccupied empty spaces quickly (in 2-4 months) and strongly (50-90%) in all plots except for the summer plots where non-Ulva species dominated throughout the recovery period. U. pertusa acted as a very important biological variable that determined the quantitative and qualitative recovery capability of a community. The qualitative recovery of communities was rapid in summer plots where U. pertusa did not recruit and the community recovery rate was the lowest in winter plots where U. pertusa was highly recruited with a long duration of distribution. In this study, U. pertusa was a pioneer species while being a dominant species and acted as a clearly negative element in the process of qualitative recovery after disturbance. However, the negative effect of U. pertusa did not occur in summer plots, indicating that disturbance timing should be considered as a parameter in understanding intertidal community resilience in temperate regions with four distinct seasons.

키워드

참고문헌

  1. Addessi, L. 1994. Human disturbance and long-term changes on a rocky intertidal community. Ecol. Appl. 4:786-797. https://doi.org/10.2307/1942008
  2. Allison, G. 2004. The influence of species diversity and stress intensity on community resistance and resilience. Ecol. Monogr. 74:117-134. https://doi.org/10.1890/02-0681
  3. Bellgrove, A., Clayton, M. N. & Quinn, G. P. 2004. An integrated study of the temporal and spatial variation in the supply of propagules, recruitment and assemblages of intertidal macroalgae on a wave-exposed rocky coast, Victoria, Australia. J. Exp. Mar. Biol. Ecol. 310:207-225. https://doi.org/10.1016/j.jembe.2004.04.011
  4. Bellgrove, A., McKenzie, P. F., McKenzie, J. L. & Sfiligoj, B. J. 2010. Restoration of the habitat-forming fucoid alga Hormosira banksii at effluent-affected sites: competitive exclusion by coralline turfs. Mar. Ecol. Prog. Ser. 419:47-56. https://doi.org/10.3354/meps08843
  5. Benedetti-Cecchi, L. 2000. Predicting direct and indirect interactions during succession in a mid-littoral rocky shore assemblage. Ecol. Monogr. 70:45-72. https://doi.org/10.1890/0012-9615(2000)070[0045:PDAIID]2.0.CO;2
  6. Benedetti-Cecchi, L., Maggi, E., Bertocci, I., Vaselli, S., Micheli, F., Osio, G. C. & Cinelli, F. 2003. Variation in rocky shore assemblages in the northwestern Mediterranean: contrasts between islands and the mainland. J. Exp. Mar. Biol. Ecol. 293:193-215. https://doi.org/10.1016/S0022-0981(03)00220-X
  7. Bernhardt, J. R. & Leslie, H. M. 2013. Resilience to climate change in coastal marine ecosystems. Annu. Rev. Mar. Sci. 5:371-392. https://doi.org/10.1146/annurev-marine-121211-172411
  8. Bulleri, F., Benedetti-Cecchi, L., Jaklin, A. & Ivesa, L. 2016. Linking disturbance and resistance to invasion via changes in biodiversity: a conceptual model and an experimental test on rocky reefs. Ecol. Evol. 6:2010-2021. https://doi.org/10.1002/ece3.1956
  9. Choi, T. S. & Kim, K. Y. 2004. Spatial pattern of intertidal macroalgal assemblages associated with tidal levels. Hydrobiologia 512:49-56. https://doi.org/10.1023/B:HYDR.0000020309.72972.17
  10. Clarke, K. R. & Warwick, R. M. 2001. Change in marine communities: an approach to statistical analysis and interpretation. 2nd ed. PRIMER-E Ltd., Plymouth, 172 pp.
  11. Connell, J. H. & Slatyer, R. O. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111:1119-1144. https://doi.org/10.1086/283241
  12. Cubit, J. D. 1984. Herbivory and the seasonal abundance of algae on a high intertidal rocky shore. Ecology 65:1904-1917. https://doi.org/10.2307/1937788
  13. Dayton, P. K. 1975. Experimental evaluation of ecological dominance in a rocky intertidal algal community. Ecol. Monogr. 45:137-159. https://doi.org/10.2307/1942404
  14. Deepananda, K. H. M. A. & Macusi, E. D. 2012. Human disturbance on tropical rockyshore assemblages and the role of marine protected areas in reducing its impact. Philipp. Agric. Sci. 95:87-98.
  15. Diez, I., Santolaria, A., Secilla, A. & Gorostiaga, J. M. 2009. Recovery stages over long-term monitoring of the intertidal vegetation in the 'Abra de Bilbao' area and on the adjacent coast (N. Spain). Eur. J. Phycol. 44:1-14. https://doi.org/10.1080/09670260802158642
  16. Emslie, M. J., Cheal, A. J. & Delean, S. 2008. Recovery from disturbance of coral and reef fish communities on the Great Barrier Reef, Australia. Mar. Ecol. Prog. Ser. 371:177-190. https://doi.org/10.3354/meps07657
  17. Farrell, T. M. 1989. Succession in a rocky intertidal community: the importance of disturbance size and position within a disturbed patch. J. Exp. Mar. Biol. Ecol. 128:57-73. https://doi.org/10.1016/0022-0981(89)90092-0
  18. Foster, M. S., Nigg, E. W., Kiguchi, L. M., Hardin, D. D. & Pearse, J. S. 2003. Temporal variation and succession in an algal-dominated high intertidal assemblage. J. Exp. Mar. Biol. Ecol. 289:15-39. https://doi.org/10.1016/S0022-0981(03)00035-2
  19. Huff, T. M. 2011. Effects of human trampling on macro- and meiofauna communities associated with intertidal algal turfs and implications for management of protected areas on rocky shores (southern California). Mar. Ecol. 32:335-345. https://doi.org/10.1111/j.1439-0485.2011.00467.x
  20. Hutchinson, N. & Williams, G. A. 2003. Disturbance and subsequent recovery of mid-shore assemblages on seasonal, tropical, rocky shores. Mar. Ecol. Prog. Ser. 249:25-38. https://doi.org/10.3354/meps249025
  21. Jost, L., DeVries, P., Walla, T., Greeney, H., Chao, A. & Ricotta, C. 2010. Partitioning diversity for conservation analyses. Divers. Distrib. 16:65-76. https://doi.org/10.1111/j.1472-4642.2009.00626.x
  22. Kang, E. J. & Kim, K. Y. 2016. Effects of future climate conditions on photosynthesis and biochemical component of Ulva pertusa (Chlorophyta). Algae 31:49-59. https://doi.org/10.4490/algae.2016.31.3.9
  23. Kennish, R., Williams, G. A. & Lee, S. Y. 1996. Algal seasonality on an exposed rocky shore in Hong Kong and the dietary implications for the herbivorous crab Grapsus albolineatus. Mar. Biol. 125:55-64. https://doi.org/10.1007/BF00350760
  24. Kim, B. J., Lee, H. J., Yum, S., Lee, H. A., Bhang, Y. J., Park, S. R., Kim, H. J. & Kim, J. H. 2004a. A short-term response of macroalgae to potential competitor removal in a midintertidal habitat in Korea. Hydrobiologia 512:57-62. https://doi.org/10.1023/B:HYDR.0000020310.10610.67
  25. Kim, J. H. & DeWreede, R. E. 1996. Effects of size and season of disturbance on algal patch recovery in a rocky intertidal community. Mar. Ecol. Prog. Ser. 133:217-228. https://doi.org/10.3354/meps133217
  26. Kim, J. H., Kang, E. J., Edwards, M. S., Lee, K., Jeong, H. J. & Kim, K. Y. 2016. Species-specific responses of temperate macroalgae with different photosynthetic strategies to ocean acidification: a mesocosm study. Algae 31:243-256. https://doi.org/10.4490/algae.2016.31.8.20
  27. Kim, J. H., Ko, Y. D., Kim, Y. S. & Nam, K. W. 2011. Marine algal flora and community structure of Gogunsan islands outside the Saemangeum dike. Korean J. Environ. Ecol. 25:156-165.
  28. Kim, K. Y., Choi, T. S., Kim, J. H., Han, T., Shin, H. W. & Garbary, D. J. 2004b. Physiological ecology and seasonality of Ulva pertusa on a temperate rocky shore. Phycologia 43:483-492. https://doi.org/10.2216/i0031-8884-43-4-483.1
  29. Lande, R. 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:5-13. https://doi.org/10.2307/3545743
  30. Lee, J. W., Oh, B. G. & Lee, H. -B. 2000. Marine benthic algal community at Padori, west coast of Korea. Algae 15:111-117.
  31. Long, J. D., Cochrane, E. & Dolecal, R. E. 2011. Previous disturbance enhances the negative effects of trampling on barnacles. Mar. Ecol. Prog. Ser. 437:165-173. https://doi.org/10.3354/meps09288
  32. Mayakun, J., Kim, J. H. & Prathep, A. 2010. Effects of herbivory and the season of disturbance on algal succession in a tropical intertidal shore, Phuket, Thailand. Phycol. Res. 58:88-96. https://doi.org/10.1111/j.1440-1835.2010.00566.x
  33. Milazzo, M., Badalamenti, F., Riggio, S. & Chemello, R. 2004. Patterns of algal recovery and small-scale effects of canopy removal as a result of human trampling on a Mediterranean rocky shallow community. Biol. Conserv. 117:191-202. https://doi.org/10.1016/S0006-3207(03)00292-1
  34. National Oceanographic Research Institute. 2007. 2008 Tide tables (coast of Korea). Korea Ministry of Oceans and Fisheries, Publication No. 510. National Oceanographic Research Institute, Incheon, 367 pp.
  35. Navarrete, S. A. 1996. Variable predation: effects of whelks on a mid-intertidal successional community. Ecol. Monogr. 66:301-321. https://doi.org/10.2307/2963520
  36. Oh, B. G., Lee, J. W. & Lee, H. B. 2002. A summer marine benthic algal flora and community of uninhabited islands in Haenamgun, southern coast of Korea. J. Korean Fish. Soc. 35:57-63.
  37. Park, C. S., Lee, K. W., Cho, Y. S., Kim, G. B., Oh, J. G. & Hwang, E. K. 2009. Summer algal flora of Dadohae National Park, southwestern coast of Korea. Korean J. Environ. Biol. 27:252-260.
  38. Peterson, C. G. & Stevenson, R. J. 1992. Resistance and resilience of lotic algal communities: importance of disturbance timing and current. Ecology 73:1445-1461. https://doi.org/10.2307/1940689
  39. Schiel, D. R. & Lilley, S. A. 2011. Impacts and negative feedbacks in community recovery over eight years following removal of habitat-forming macroalgae. J. Exp. Mar. Biol. Ecol. 407:108-115. https://doi.org/10.1016/j.jembe.2011.07.004
  40. Sousa, W. P. 1979. Experimental investigations of disturbance and ecological succession in a rocky intertidal algal community. Ecol. Monogr. 49:227-254. https://doi.org/10.2307/1942484
  41. Sousa, W. P. 1980. The responses of a community to disturbance: the importance of successional age and species' life histories. Oecologia 45:72-81. https://doi.org/10.1007/BF00346709
  42. Sousa, W. P. 1984a. Intertidal mosaics: patch size, propagule availability, and spatially variable patterns of succession. Ecology 65:1918-1935. https://doi.org/10.2307/1937789
  43. Sousa, W. P. 1984b. The role of disturbance in natural communities. Annu. Rev. Ecol. Syst. 15:353-391. https://doi.org/10.1146/annurev.es.15.110184.002033
  44. Sousa, W. P. 2001. Natural disturbance and the dynamics of marine benthic communities. In Bertness, M. D., Gaines, S. D. & Hay, M. E. (Eds.) Marine Community Ecology. Sinauer Associates, Sunderland, MA, pp. 85-130.
  45. Tamburello, L., Bulleri, F., Balata, D. & Benedetti-Cecchi, L. 2014. The role of overgrazing and anthropogenic disturbance in shaping spatial patterns of distribution of an invasive seaweed. J. Appl. Ecol. 51:406-414. https://doi.org/10.1111/1365-2664.12199
  46. Tuchman, N. C. & Stevenson, R. J. 1991. Effects of selective grazing by snails on benthic algal succession. J. N. Am. Benthol. Soc. 10:430-443. https://doi.org/10.2307/1467668
  47. Turner, T. 1983. Complexity of early and middle successional stages in a rocky intertidal surfgrass community. Oecologia 60:56-65. https://doi.org/10.1007/BF00379320
  48. Underwood, A. J. 1998. Grazing and disturbance: an experimental analysis of patchiness in recovery from a severe storm by the intertidal alga Hormosira banksii on rocky shores in New South Wales. J. Exp. Mar. Biol. Ecol. 231:291-306. https://doi.org/10.1016/S0022-0981(98)00091-4
  49. Underwood, A. J. & Anderson, M. J. 1994. Seasonal and temporal aspects of recruitment and succession in an intertidal estuarine fouling assemblage. J. Mar. Biol. Assoc. UK. 74:563-584. https://doi.org/10.1017/S0025315400047676
  50. Viejo, R. M. 2009. Resilience in intertidal rocky shore assemblages across the stress gradient created by emersion times. Mar. Ecol. Prog. Ser. 390:55-65. https://doi.org/10.3354/meps08171
  51. Viejo, R. M., Arenas, F., Fernandez, C. & Gomez, M. 2008. Mechanisms of succession along the emersion gradient in intertidal rocky shore assemblages. Oikos 117:376-389. https://doi.org/10.1111/j.2007.0030-1299.16206.x
  52. Wolda, H. 1981. Similarity indices, sample size and diversity. Oecologia 50:296-302. https://doi.org/10.1007/BF00344966
  53. Wootton, J. T. 2002. Mechanisms of successional dynamics: consumers and the rise and fall of species dominance. Ecol. Res. 17:249-260. https://doi.org/10.1046/j.1440-1703.2002.00484.x

피인용 문헌

  1. A Framework to Advance the Understanding of the Ecological Effects of Extreme Climate Events vol.11, pp.21, 2019, https://doi.org/10.3390/su11215954
  2. Timing of disturbance, top‐down, and bottom‐up driving on early algal succession patterns in a tropical intertidal community vol.68, pp.2, 2020, https://doi.org/10.1111/pre.12406
  3. Effects of Ulva spp. and seasonal disturbances on the recovery of a temperate rocky intertidal community vol.69, pp.1, 2017, https://doi.org/10.1111/pre.12439