DOI QR코드

DOI QR Code

군 무기체계에서 정비 데이터를 이용한 측정신뢰도 모델의 F-검정 및 성능지수 기반 교정주기 분석 기법

Calibration Interval Analysis Method Based on F-test and Performance Index of Measurement Reliability Model Using Maintenance Data in Military Weapon Systems

  • Cha, Yun-bae (Department of Weapon Systems Engineering, Pukyong National University) ;
  • Kim, Boo-il (Department of Electrical, Electronics and Software Engineering, Pukyong National University)
  • 투고 : 2017.09.04
  • 심사 : 2017.10.10
  • 발행 : 2017.11.30

초록

군 무기체계의 성능을 점검하기 위해 사용되는 정밀측정장비는 수명주기 동안 측정신뢰도 유지를 위해 주기적으로 교정된다. 기존의 교정주기 관련 연구들은 장비의 샘플 크기와 특성을 고려하여 측정신뢰도 모델을 결정할 것을 제안하고 있으나, 다양한 정밀측정장비의 정비 데이터에 동일한 특성 분포를 가정하고 단일 모델을 적용하는 것은 적합하지 않을 수 있다. 본 논문에서는 정밀측정장비의 수명주기 동안 욕조 곡선의 특성을 가정하여 측정신뢰도 모델들로부터 추정된 교정주기 가운데 F-검정과 성능지수 평가를 통해 정비 데이터에 가장 적합한 교정주기가 선택되도록 제안하였다. 제안한 방법을 다양한 장비에 적용한 결과 교정주기 동안 장비의 신뢰도가 유지됨을 확인하였다.

The PME(precision measurement equipment) used in the measurement to check the performance of the equipment in military weapon system is periodically calibrated to maintain measurement reliability during the life cycle. Previous studies suggest that reliability models are determined by considering sample size and characteristics of equipment. However, it may not be fit well to apply a single model assuming the same characteristic distribution for the maintenance date of many kinds of PMEs. This paper proposes that the most suitable calibration interval for maintenance data is selected through the F-test and the performance index evaluation among the calibration intervals estimated from the measurement reliability models assuming the characteristic of the bath-tub curve during the life cycle of various PMEs. The research results show that the reliabilities of various types of equipment are maintained during calibration intervals.

키워드

참고문헌

  1. Technical Manual, Air Force Metrology and Calibration Program, US AFMC, 2016.
  2. NCSL Calibration Interval Committee, "Establishment and adjustment of calibration intervals, recommended practice RP-1," in National Conference of Standard Laboratories, pp. 27-76, 2010.
  3. S. Brockway and T. Gorman, "Air force interval analysis of test, measurement and diagnostic equipment based on maintenance data collection," in Proceedings of the 2008 NCSL International Workshop and Symposium, pp. 1-5, 2008.
  4. E. M. A. AI Reeshi, "Industrial engineering application in metrology : job scheduling, calibration interval and average outgoing quality," Ph. D. dissertation, School of Engineering and Design Brunel University, UK, 2013.
  5. P. Carbone, "Performance of simple response method for the establishment and adjustment of calibration intervals," IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 3, pp. 730-735, May 2004. https://doi.org/10.1109/TIM.2004.827298
  6. S. M. Shin and S. Uroosa, "Predicting software reliability using particle SWARM optimization technique," Asia-pacific Journal of Convergent Research Interchange, vol.1, no.3, pp. 17-30, Sep. 2015.
  7. C. Kim, "A Practical Guide to Adjusting Calibration Interval," in Proceedings of the 2014 NCSL International Workshop & Symposium, pp. 1-10, 2014.
  8. H. Paul, "Cost Effective Calibration Intervals Using Weibull Analysis," in Proceedings of the American Society for Quality Control 49th Annual Quality Congress, pp. 1-12, 1995.
  9. A. J. Lemonte, "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Journal of Computational Statistics & Data Analysis, vol. 62, pp. 149-170, June 2013. https://doi.org/10.1016/j.csda.2013.01.011
  10. T. Zhang, R. Dwight, and K. El-Akruti, "On a Weibull related distribution model with decreasing, increasing and upside-down bathtub-shaped failure rate," in Proceedings of Reliability and Maintainability Symposium, pp. 1-6, Jan. 2013.