DOI QR코드

DOI QR Code

Partial interaction analysis of multi-component members within the GBT

  • 투고 : 2017.01.06
  • 심사 : 2017.09.03
  • 발행 : 2017.12.10

초록

This paper presents a novel approach that describes the first-order (linear elastic) partial interaction analysis of members formed by multi-components based on the Generalised Beam Theory (GBT). The novelty relies on its ability to accurately model the partial interaction between the different components forming the cross-section in both longitudinal and transverse directions as well as to consider the cross-sectional deformability. The GBT deformations modes, that consist of the conventional, extensional and shear modes, are determined from the dynamic analyses of the cross-section represented by a planar frame. The partial interaction is specified at each connection interface between two adjacent elements by means of a shear deformable spring distributed along the length of the member. The ease of use of the model is outlined by an application performed on a multi-component member subjected to an eccentric load. The values calculated with an ABAQUS finite element model are used to validate the proposed method. The results of the numerical applications outline the influence of specifying different rigidities for the interface shear connection and in using different order of polynomials for the shape functions specified in the finite element cross-section analysis.

키워드

과제정보

연구 과제 주관 기관 : Australian Research Council

참고문헌

  1. Adany, S. and Shafer, B.W. (2006), "Buckling mode decomposition of single-branched open cross-section members via finite strip method: Application and examples", Thin Wall. Struct., 44, 585-600. https://doi.org/10.1016/j.tws.2006.03.014
  2. Adany, S. and Shafer, B.W. (2008), "A full modal decomposition of thin-walled, single branched open cross-section members via the constrained finite strip method", J. Constr. Steel Res., 64, 12-29. https://doi.org/10.1016/j.jcsr.2007.04.004
  3. Adekola, A.O. (1968), "Partial interaction between elastically connected elements of a composite beam", Int. J. Solids Struct., 4, 1125-1135. https://doi.org/10.1016/0020-7683(68)90027-9
  4. Al-Deen, S., Ranzi, G. and Uy, B. (2015), "Non-uniform shrinkage in simply-supported composite steel-concrete slabs", Steel Compos. Struct., 18(2), 375-394. https://doi.org/10.12989/scs.2015.18.2.375
  5. Bathe, K.J. (2006), Finite Element Procedure, Prentice Hall, New Jersey.
  6. Casafront, M. and Marimon, M.M. (2009), "Calculation of pure distorsional elastic buckling loads of members subjected to compression via finite element method", Thin Wall. Struct., 47, 701-729. https://doi.org/10.1016/j.tws.2008.12.001
  7. Chakrabarti, A., Sheikh, A.H., Grifith, M. and Oehlers, D.J. (2012), Analysis of composite beams with partial shear interaction using a higher order beam theory", Eng. Struct., 36, 283-291. https://doi.org/10.1016/j.engstruct.2011.12.019
  8. Dassault Systemes Simulia, (2008), ABAQUS User's Manual", version 6.8EF-2, Dassault Systèmes Simulia Corp., Providence, RI, USA.
  9. Dezi, L., Gara, F. and Leoni, G. (2003), "Shear-lag effect in twin-girder composite decks", Steel Compos. Struct., 3(2), 111-122. https://doi.org/10.12989/scs.2003.3.2.111
  10. Dezi, L., Gara, F. and Leoni, G. (2006), "Effective slab width in prestressed twin-girder composite decks", J. Struct. Eng., 132(9), 1358-1370. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:9(1358)
  11. Eccher, G., Rasmussen, K.J.R. and Zandonini, R. (2008), "Linear elastic isoparametric spline finite strip analysis of perforated thin-walled structures", Thin Wall. Struct., 46, 242-260. https://doi.org/10.1016/j.tws.2007.09.002
  12. Gara, F., Carbonari, S., Leoni, G. and Dezi, L. (2014), "A higher order steel-concrete composite beam model", Eng. Struct., 80, 260-273. https://doi.org/10.1016/j.engstruct.2014.09.002
  13. Gonçalves, R. and Camotim, D. (2010), "Steel-concrete composite bridge analysis using Generalised Beam Theory", Steel Compos. Struct., 10, 223-243. https://doi.org/10.12989/scs.2010.10.3.223
  14. Hanaor, A. (2000), "Tests of composite beams with cold-formed sections", J. Constr. Steel Res., 54, 245-264. https://doi.org/10.1016/S0143-974X(99)00046-2
  15. Henriques, D., Gonçalves, R. and Camotim, D. (2015) "A physically non-linear GBT-based finite element for steel and steel-concrete beams including shear lag effects", Thin Wall. Struct., 90 , 202-215. https://doi.org/10.1016/j.tws.2015.01.010
  16. Henriques, D., Gonçalves, R. and Camotim, D. (2016) "GBT -based finite element to assess the buckling behaviour of steel-concrete omposite beams", Thin Wall. Struct., 107, 207-220. https://doi.org/10.1016/j.tws.2016.06.005
  17. Li, D., Uy, B., Patel, V. and Aslani, F. (2016), "Behaviour and design of demountable steel column-column connections", Steel Compos. Struct., 22(2), 429-448. https://doi.org/10.12989/scs.2016.22.2.429
  18. Liu, X., Bradford, M.A., Chen, Q.J. and Ban, H. (2016), "Finite element modelling of steel-concrete composite beams with high-strength friction-grip bolt shear connectors", Finite Elem. Anal. Des., 108, 54-65. https://doi.org/10.1016/j.finel.2015.09.004
  19. Luongo, A. (2001), "Mode localization in dynamics and buckling of linear imperfect continuous structures", Nonlinear Dyn., 25, 133-156. https://doi.org/10.1023/A:1012954700751
  20. Newmark, N.M., Siess, C.P. and Viest, I.M. (1951), "Test and analysis of composite beams with incomplete interaction", Proc. Soc. Exp. Stress Anal., 9(1), 75-92.
  21. Nguyen., Q.H., Hjiai, M. and Lai, V.A. (2014), "Force-based FE for large displacement inelastic analysis of two-layer Timoshenko beams with interlayer slips", Finite Elem. Anal. Des., 85, 1-10. https://doi.org/10.1016/j.finel.2014.02.007
  22. Piccardo, G., Ranzi, G. and Luongo, A. (2014), A complete dynamic approach to the Generalized Beam Theory cross-section analysis including extension and shear modes", Math Mech Solids, 19, 900-924. https://doi.org/10.1177/1081286513493107
  23. Ranzi, G. and Gilbert, R.I. (2015), Structural Analysis: Principles, Methods and Modelling, Spoon Press,
  24. Ranzi, G. and Luongo, A. (2011), "A new approach for thin-walled member analysis in the framework of GBT", Thin Wall. Struct., 49, 1404-1414. https://doi.org/10.1016/j.tws.2011.06.008
  25. Schardt, R. (1989), Verallgemeinerte Technicsche Biegetheory, Springler-Verlag, Berlin, Germany.
  26. Silva, N.F., Silvestre, N. and Camotim, D. (2006), "GBT formulation to analyse the buckling behaviour of frp composite branched thin-walled beams", Proceedings of the III European Conference on Computational Mechanics Solids, Structures and Coupled Problems in Engineering, Lisbon, Portugal, June.
  27. Silvestre, N. and Camotim, D. (2002), "First-order generalised beam theory for arbitrary orthotropic materials", Thin Wall. Struct., 40, 755-789. https://doi.org/10.1016/S0263-8231(02)00025-3
  28. Su, Q., Yang, G. and Bradford, M.A. (2014), "Static behaviour of multi-row stud shear connectors in high-strength concrete", Steel Compos. Struct., 17(6), 967-980. https://doi.org/10.12989/scs.2014.17.6.967
  29. Taig, G. and Ranzi, G. (2015), "Generalised beam theory (GBT) for composite beams with partial shear interaction", Eng. Struct., 99, 582-602. https://doi.org/10.1016/j.engstruct.2015.05.025
  30. Taig, G. and Ranzi, G. (2016), "Generalised beam theory for composite beams with longitudinal and transverse partial interaction", Math. Mech Solids, DOI: 10.1177/1081286516653799.
  31. Taig, G., Ranzi, G. and D'Annibale, F. (2015b) "An unconstrained dynamic approach for the Generalised Beam Theory", Contin. Mech. Thermodyn, 27, 879-904. https://doi.org/10.1007/s00161-014-0358-5
  32. Taig, G., Ranzi, G., Dias-da-Costa, D., Piccardo, G and Luongo, A. (2015a), "A GBT model for the analysis of composite steel-concrete beams with partial shear interaction", Structures, 4, 25-37.
  33. Vlasov, V.Z. (1961), Thin-Walled Elastic Beams, Monson, Jerusalem, Israel.
  34. Vrcelj, Z. and Bradford, M.A. (2008), "A simple method for the inclusion of external and internal supports in the spline finite strip method (SFSM) of buckling analysis", Comput. Struct., 86, 529-544. https://doi.org/10.1016/j.compstruc.2007.05.001