DOI QR코드

DOI QR Code

PEO-PPO-PEO 블록 공중합체를 이용한 PDMS의 친수성 표면 개질 방법

Surface Modification of PDMS for Hydrophilic and Antifouling Surface Using PEO-PPO-PEO Block Copolymer

  • 투고 : 2017.04.15
  • 심사 : 2017.08.04
  • 발행 : 2017.12.01

초록

본 연구에서는 Poly (dimethylsiloxane) (PDMS)의 높은 소수성과 생체분자들의 비특이적 흡착 문제를 해결하기 위해 PEO-PPO-PEO 블록 공중합체의 포매(embeddeing) 방식을 이용하여 손쉬운 표면 개질 및 이의 최적화 조건을 조사하였다. 친수성 표면 개질의 특성은 PDMS 내에 포매된 블록 공중합체의 농도, 수침(water-soaking), 및 소수성 표면으로 회복 시간 등의 영향을 평가하였다. 개질된 PDMS 표면은 알부민 단백질(2 mg/ml)까지 단백질의 비특이적 결합 방지 특성을 보였으며, 또한 O/W (Oil-in-Water) 에멀젼을 쉽게 형성할 수 있었다.

In this study, we optimized a method of PEO-PPO-PEO block copolymer embedding, for solving non-specific protein and biomolecular adsorption and high hydrophobicic surface property, which is widely known as problems of poly (dimethylsiloxane) (PDMS) that has frequently been used in basic biological and its applied research. We assessed its surface modification by controlling the concentration of embedded block copolymer, water-soaking time, and recovery time as variables by contact angle measurements. In order to evaluate its antifouling ability, adsorption of FITC-BSA molecules was quantified. Furthermore, we generated oil-in-water (O/W) emulsion as a proof-of-concept experiment to confirm that the optimized surface modification works properly.

키워드

참고문헌

  1. Hillborg, H. and Gedde, U. W., "Hydrophobicity Changes in Silicone Rubbers," Ieee T. Dielect. El. In., 6(5), 703-717(1999). https://doi.org/10.1109/94.798127
  2. McDonald, J. C. and Whitesides, G. M., "Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices," Accounts Chem. Res., 35(7), 491-499(2002). https://doi.org/10.1021/ar010110q
  3. Sia, S. K. and Whitesides, G. M., "Microfluidic Devices Fabricated in Poly(dimethylsiloxane) for Biological Studies," Electrophoresis, 24(21), 3563-3576(2003). https://doi.org/10.1002/elps.200305584
  4. Lee, D., Kim, Y. T., Lee, J. W., Kim, D. H. and Seo, T. S., "An Integrated Slidable Direct Polymerase Chain Reaction-capillary Electrophoresis Microdevice for Rapid Y Chromosome Short Tandem Repeat Analysis," Korean J. Chem. Eng., 33(9), 2644-2649(2016). https://doi.org/10.1007/s11814-016-0103-9
  5. Singh, R., Lee, H. J., Singh, A. K. and Kim, D. P., "Recent Advances for Serial Processes of Hazardous Chemicals in Fully Integrated Microfluidic Systems," Korean J. Chem. Eng., 33(8), 2253-2267(2016). https://doi.org/10.1007/s11814-016-0114-6
  6. Lee, Y. J., I., Na, J., Park, S., Kshetrimayum, K. S. and Han, C., "Analysis on Thermal Effects of Process Channel Geometry for Microchannel Fischer-Tropsch Reactor Using Computational Fluid Dynamics," Korean Chem. Eng. Res., 53(6), 818-823(2015). https://doi.org/10.9713/kcer.2015.53.6.818
  7. Dahlin, A. P., Bergstrom, S. K., Andren, P. E., Markides, K. E. and Bergquist, J., "Poly(dimethylsiloxane)-based Microchip for Two-dimensional Solid-phase Extraction-capillary Electrophoresis with an Integrated Electrospray Emitter Tip," Anal. Chem., 77(16), 5356-5363(2005). https://doi.org/10.1021/ac050495g
  8. Jeong, S. G., Kim, J., Jin, S. H., Park, K. S. and Lee, C. S., "Flow Control in Paper-based Microfluidic Device for Automatic Multistep Assays: A Focused Minireview," Korean J. Chem. Eng., 33(10), 2761-2770(2016). https://doi.org/10.1007/s11814-016-0161-z
  9. Sung, Y. J., Kwak, H. S., Choi, H. I., Kim, J. Y. H. and J., S. S., "Growth Analysis of Chlamydomonas reinhardtii in Photoautotrophic Culture with Microdroplet Photobioreactor System," Korean Chem. Eng. Res., 55(1), 80-85(2017). https://doi.org/10.9713/kcer.2017.55.1.80
  10. Lee, S., Jeong, W. and Beebe, D. J., "Microfluidic Valve with Cored Glass Microneedle for Microinjection," Lab Chip, 3(3), 164-167(2003). https://doi.org/10.1039/b305692a
  11. Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. and Quake, S. R., "Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography," Science, 288(5463), 113-116(2000). https://doi.org/10.1126/science.288.5463.113
  12. Faid, K., Voicu, R., Bani-Yaghoub, M., Tremblay, R., Mealing, G., Py, C. and Barjovanu, R., "Rapid Fabrication and Chemical Patterning of Polymer Microstructures and Their Applications as a Platform for Cell Cultures," Biomed. Microdevices, 7(3), 179-184(2005). https://doi.org/10.1007/s10544-005-3023-8
  13. Russell, M. T., Pingree, L. S. C., Hersam, M. C. and Marks, T. J., "Microscale Features and Surface Chemical Functionality Patterned by Electron Beam Lithography: A Novel Route to Poly(dimethylsiloxane) (PDMS) Stamp Fabrication," Langmuir, 22(15), 6712-6718(2006). https://doi.org/10.1021/la060319i
  14. KIm, G. Y., Jeong, H.-H., Lee, C.-S. and Roh, C., "Simple Fabrication of Adipocyte Cell Chip Using Micropatterning," Korean Chem. Eng. Res., 54(2), 223-228(2016). https://doi.org/10.9713/kcer.2016.54.2.223
  15. Baret, J. C., Miller, O. J., Taly, V., Ryckelynck, M., El-Harrak, A., Frenz, L., Rick, C., Samuels, M. L., Hutchison, J. B., Agresti, J. J., Link, D. R., Weitz, D. A. and Griffiths, A. D., "Fluorescence-Activated Droplet Sorting (FADS): Efficient Microfluidic Cell Sorting Based on Enzymatic Activity," Lab Chip, 9(11), 1850-1858(2009). https://doi.org/10.1039/b902504a
  16. Cho, S. H., Chen, C. H., Tsai, F. S., Godin, J. M. and Lo, Y. H., "Human Mammalian Cell Sorting Using a Highly Integrated Microfabricated Fluorescence-activated Cell Sorter (mu FACS)," Lab Chip, 10(12), 1567-1573(2010). https://doi.org/10.1039/c000136h
  17. Fu, A. Y., Spence, C., Scherer, A., Arnold, F. H. and Quake, S. R., "A Microfabricated Fluorescence-activated Cell Sorter," Nat. Biotechnol., 17(11), 1109-1111(1999). https://doi.org/10.1038/15095
  18. Karir, T., Hassan, P. A., Kulshreshtha, S. K., Samuel, G., Sivaprasad, N. and Meera, V., "Surface Modification of Polystyrene Using Polyaniline Nanostructures for Biomolecule Adhesion in Radioimmunoassays," Anal. Chem., 78(11), 3577-3582(2006). https://doi.org/10.1021/ac052032g
  19. Toepke, M. W. and Beebe, D. J., "PDMS Absorption of Small Molecules and Consequences in Microfluidic Applications," Lab Chip, 6(12), 1484-1486(2006). https://doi.org/10.1039/b612140c
  20. Kim, P., Lee, S. E., Jung, H. S., Lee, H. Y., Kawai, T. and Suh, K. Y., "Soft Lithographic Patterning of Supported Lipid Bilayers Onto a Surface and Inside Microfluidic Channels," Lab Chip, 6(1), 54-59(2006). https://doi.org/10.1039/B512593F
  21. Lee, S. and Voros, J., "An Aqueous-based Surface Modification of Poly(dimethylsiloxane) with Poly(ethylene glycol) to Prevent Biofouling," Langmuir, 21(25), 11957-11962(2005). https://doi.org/10.1021/la051932p
  22. Kovach, K. M., Capadona, J. R., Sen Gupta, A. and Potkay, J. A., "The Effects of PEG-based Surface Modification of PDMS Microchannels on Long-term Hemocompatibility," J. Biomed. Mater. Res. A, 102(12), 4195-4205(2014).
  23. Zhang, H. B. and Chiao, M., "Anti-fouling Coatings of Poly (dimethylsiloxane) Devices for Biological and Biomedical Applications," J. Med. Biol. Eng., 35(2), 143-155(2015). https://doi.org/10.1007/s40846-015-0029-4
  24. Xu, J. J. and Gleason, K. K., "Conformal, Amine-Functionalized Thin Films by Initiated Chemical Vapor Deposition (iCVD) for Hydrolytically Stable Microfluidic Devices," Chem. Mater., 22(5), 1732-1738(2010). https://doi.org/10.1021/cm903156a
  25. Yang, R. and Gleason, K. K., "Ultrathin Antifouling Coatings with Stable Surface Zwitterionic Functionality by Initiated Chemical Vapor Deposition (iCVD)," Langmuir, 28(33), 12266-12274(2012). https://doi.org/10.1021/la302059s
  26. Huang, B., Wu, H. K., Kim, S., Kobilka, B. K. and Zare, R. N., "Phospholipid Biotinylation of Polydimethylsiloxane (PDMS) for Protein Immobilization," Lab Chip, 6(3), 369-373(2006). https://doi.org/10.1039/b515840k
  27. Wu, Z. G. and Hjort, K., "Surface Modification of PDMS by Gradient-induced Migration of Embedded Pluronic," Lab Chip, 9(11), 1500-1503(2009). https://doi.org/10.1039/b901651a
  28. Zhou, J. W., Khodakov, D. A., Ellis, A. V. and Voelcker, N. H., "Surface Modification for PDMS-based Microfluidic Devices," Electrophoresis, 33(1), 89-104(2012). https://doi.org/10.1002/elps.201100482
  29. Kim, J., Chaudhury, M. K. and Owen, M. J., "Hydrophobic Recovery of Polydimethylsiloxane Elastomer Exposed to Partial Electrical Discharge," J. Colloid Interf. Sci., 226(2), 231-236(2000). https://doi.org/10.1006/jcis.2000.6817
  30. Hillborg, H., Sandelin, M. and Gedde, U. W., "Hydrophobic Recovery of Polydimethylsiloxane After Exposure to Partial Discharges as a Function of Crosslink Density," Polymer, 42(17), 7349-7362 (2001). https://doi.org/10.1016/S0032-3861(01)00202-6
  31. Fritz, J. L. and Owen, M. J., "Hydrophobic Recovery of Plasmatreated Polydimethylsiloxane," J. Adhesion, 54(1-2), 33-45(1995). https://doi.org/10.1080/00218469508014379
  32. Kim, J., Chaudhury, M. K., Owen, M. J. and Orbeck, T., "The Mechanisms of Hydrophobic Recovery of Polydimethylsiloxane Elastomers Exposed to Partial Electrical Discharges," J. Colloid Interf. Sci., 244(1), 200-207(2001). https://doi.org/10.1006/jcis.2001.7909
  33. Dong, B. Y., Manolache, S., Wong, A. C. L. and Denes, F. S., "Antifouling Ability of Polyethylene Glycol of Different Molecular Weights Grafted Onto Polyester Surfaces by Cold Plasma," Polym. Bull., 66(4), 517-528(2011). https://doi.org/10.1007/s00289-010-0358-y