DOI QR코드

DOI QR Code

도시 물 순환 개선을 위한 생태저류지의 최적설계용량 결정

Determination of Optimum Design Capacity of Bio-retention for Improvement of Urban Water Cycle

  • Lee, Okjeong (Department of Environmental Engineering, Pukyong National University) ;
  • Choi, Jeonghyeon (Department of Environmental Engineering, Pukyong National University) ;
  • Lee, Jeonghoon (Department of Environmental Engineering, Pukyong National University) ;
  • Kim, Sangdan (Department of Environmental Engineering, Pukyong National University)
  • 투고 : 2017.06.21
  • 심사 : 2017.07.28
  • 발행 : 2017.12.01

초록

본 연구에서는 도시 개발에 따라 왜곡된 도시 물 순환을 LID 시설을 통하여 자연적인 물 순환으로 되돌리고자 하는 설계전략이 제안된다. 이는 도시 개발 전과 후의 유황곡선이 동일하게 유지되는 최적의 LID 시설 설계용량을 결정함으로서 구현된다. 부산 녹산 국가산업단지의 일부지역이 연구대상지역으로 선정되었으며, 다양한 토지이용시나리오 및 LID 시설 설계용량에 대한 강우유출수 모의를 위하여 EPA SWMM이 구축되었다. 연구대상지역이 개발이전에 임야지역 또는 농경지역이라 가정하였을 경우, 도시 개발 이후에도 유황곡선이 도시 개발 전과 동일하게 유지되기 위해서는 불투수지역의 7.3% 또는 5.5%를 생태저류지의 면적으로 할당해야 함을 확인하였다. 또한 지역별 강우특성에 따른 생태저류지 설계용량의 민감도 분석을 수행한 결과, 농경지역의 개발 시에는 불투수지역의 3.8~5.5% 정도의 설계용량이 필요한 것으로 나타남에 따라 지역별 강우특성에 따라 생태저류지의 최적용량이 유의하게 달라질 수 있음을 살펴볼 수 있었다. 반면에, 생태저류지 각 층별 깊이의 변화에 따른 설계용량의 민감도 및 처리대상구역의 크기에 따른 민감도를 분석한 결과, 생태저류지의 설계 제원 및 처리대상구역의 크기에 따른 최적설계용량의 민감도는 크지 않은 것으로 나타났다.

In this study, a design strategy is proposed to restore the distorted urban water cycle to the natural water cycle through the LID facility. This is accomplished by determining the optimal LID facility design capacity through which flow duration curves remain the same before and after urban development. A part of the Noksan National Industrial Complex in Busan was selected as the study area and EPA SWMM was constructed to simulate long-term stormwater for various land use scenarios and LID facility design capacity. In the case that the study area was assumed to be a forest area or an agricultural area before urban development, it was found that it was necessary to allocate 7.3% or 5.5% of the impervious area to the area of the bio-retention in order for the flow duration curve to remain the same as before urban development. As a result of the sensitivity analysis of the bio-retention design capacity according to regional rainfall characteristics, the design capacity of 3.8~5.5% of impervious area is needed for the development of agriculture area. Therefore, it can be seen that the optimum capacity can be significantly different according to regional rainfall characteristics. On the other hand, as a result of analyzing the sensitivity of the design capacity according to the variation of the depth of each layer constituting the bio-retention and the size of contributing catchment area, the sensitivity of the optimal design capacity with respect to the design specifications of the bio-retention and the size of contributing catchment area was not significant.

키워드

참고문헌

  1. Lee, J. M. and Kim, J. L., "The Urban Water Cycle Planning Elements and Hydrologic Cycle Simulation for Green City," LHI Journal, 3(3), 271-278(2012).
  2. Sin, D. S., Park, J. B., Kang, D. K. and Jo, D. J., "An Analysis of Runoff Mitigation Effect Using SWMM-LID Model for Frequently Inundated Basin," Journal of Korean Society of Hazard Mitigation, 12(4), 303-309(2013).
  3. Park, M. Y., Lee, J. H., Park, B. G. and Kim, S., "Estimation of Bio Retention Design Capacity Using Principal of Diminishing Returns," Journal of Korean Society of Hazard Mitigation, 15(2), 363-368(2015a). https://doi.org/10.9798/KOSHAM.2015.15.2.363
  4. Kim, S., Lim, Y. K., Kim, J. K., Kang, D. K., Seo, S. and Lee, J. K., "Best Site Identification for Spatially Distributed On-site Stormwater Control Devices in an Urban Drainage System," Journal of Korean Society on Water Environment, 29(6), 986-993(2010).
  5. Choi, D. G., Kim, J. K., Lee, J. K. and Kim, S., "Optimal Volume Estimation for Non-point Source Control Retention Considering Spatio-tempornl Variation of Land Surface," Journal of Korean Society on Water Quality, 27(1), 9-18(2011).
  6. Lee, J., Choi, S. J., Kim, J. K., Seo, S. and Kim, S., "Development of a Simple Distributed Hydrologic Model for Determining Optimal Installation Location and Quantifying Efficiency of LID Devices for Reducing Non-point Sources," Journal of the Korean Society of Hazard Mitigation, 12(4), 215-224(2012). https://doi.org/10.9798/KOSHAM.2012.12.4.215
  7. Keem, M. S., Kang, D. K., Park, M. J. and Kim, S., "Parameter Estimation Methods of Rainwater Harvesting System Reliability Model for Improving the Applicatbility to Korea: Application to Busan, Korea," Journal of Korean Society of Hazard Mitigation, 14(2), 345-354(2014). https://doi.org/10.9798/KOSHAM.2014.14.2.345
  8. Park, J. Y., Hong, C. S., Han, J. H., Kang, H. W., Chung, B. W., Choi, G. W. and Min, J. H., "Cellular Responses to Alcohol in Escherichia coli, Clostridium acetobutylicum, and Saccharomyces cerevisiae," Korean Chem. Eng. Res., 49(1), 105-108(2011). https://doi.org/10.9713/kcer.2011.49.1.105
  9. Palhegyi, G., "Designing Stormwater Controls to Promote Sustainable Ecosystems: Science and Application," J. Hydrologic Engineering, 15(6), 504-511(2010). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000130
  10. Department of Energy and Environment (DOEE), Stormwater Management Guidebook, Department of Energy and Environment, 99-128(2013).
  11. Virginia Water Resources Research Center (VWRRC), Virginia DCR Stormwater Design Specification No.9, Virginia Water Resources Research Center, 47-59(2013).
  12. U.S. Environmental Protection Agency (USEPA), SWMM User's Manual, EPA(2015).
  13. Lee, O., Jang, S. H., Kim, H. and Kim, S., "Size Determination Method of Bio-Retention Cells for Mimicking Natural Flow Duration Curves," Journal of Wetlands Research, 18(4), 432-439(2016). https://doi.org/10.17663/JWR.2016.18.4.432