DOI QR코드

DOI QR Code

Protective effects of Aruncus dioicus var. kamtschaticus extract against hyperglycemic-induced neurotoxicity

포도당 처리로 유도된 뇌신경세포 독성에 대한 눈개승마 추출물의 보호효과

  • Park, Su Bin (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Lee, Uk (Division of Special Purpose Tree, National Institute of Forest Science) ;
  • Kang, Jin Yong (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Jong Min (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Seon Kyeong (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Sang Hyun (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Choi, Sung-Gil (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Heo, Ho Jin (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University)
  • 박수빈 (경상대학교 응용생명과학부(BK21 plus).농업생명과학연구원) ;
  • 이욱 (국립산림과학원 특용자원연구과) ;
  • 강진용 (경상대학교 응용생명과학부(BK21 plus).농업생명과학연구원) ;
  • 김종민 (경상대학교 응용생명과학부(BK21 plus).농업생명과학연구원) ;
  • 박선경 (경상대학교 응용생명과학부(BK21 plus).농업생명과학연구원) ;
  • 박상현 (경상대학교 응용생명과학부(BK21 plus).농업생명과학연구원) ;
  • 최성길 (경상대학교 응용생명과학부(BK21 plus).농업생명과학연구원) ;
  • 허호진 (경상대학교 응용생명과학부(BK21 plus).농업생명과학연구원)
  • Received : 2017.07.04
  • Accepted : 2017.07.31
  • Published : 2017.12.31

Abstract

To assess the physiological effects of Aruncus dioicus var. kamtschaticus extract on cytoxicity of a neuronal cell line, antioxidant activity, and neuroprotection against intensive glucose-induced oxidative stress were quantitated. Compared to the other fractions, the ethyl acetate fraction of Aruncus dioicus var. kamtschaticus (EFAD) showed the highest total phenolics and flavonoids. The 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assay and malondialdehyde inhibitory effect test confirmed the superior antioxidant activity of EFAD. Moreover, EFAD also decreased the intracellular ROS level and suppressed neuronal cell death against intensive glucose- or $H_2O_2$-induced oxidative stress. Additionally, assessment of ${\alpha}$-glucosidase and acetylcholinesterase inhibitory activities revealed that EFAD was an effective inhibitor of ${\alpha}$-glucosidase and acetylcholinesterase. Finally, high-performance liquid chromatography analysis identified caffeic acid as the main ingredient of EFAD. Overall, these results suggest that the EFAD is a good natural source of biological compounds that counteract hyperglycemic neuronal defects.

본 연구에서는 눈개승마(Aruncus dioicus var. kamtschaticus)의 in vitro 산화방지활성 및 고당(intensive glucose)과 과산화수소($H_2O_2$)로 야기된 산화적 스트레스로부터의 뇌신경세포 손상에 대한 보호효과와 더불어 알파글루코사이드가수분해효소 및 아세틸콜린에스터가수분해효소 억제효과를 확인하였으며 또한 HPLC를 이용하여 주요 물질을 분석하였다. 눈개승마 아세트산에틸 분획물(ethylacetate fraction from Aruncus dioicus var. kamtschaticus: EFAD)은 매우 우수한 총 페놀화합물 함량(430.08 mg GAE/g)과 총 플라보노이드 함량(511.72 mg RE/g)을 나타냈으며, 높은 ABTS 라디칼 소거 활성과 과산화지방질생성물의 억제력을 확인하였다. 또한 고당(intensive glucose)과 과산화수소($H_2O_2$)로 야기된 뇌신경세포에서의 산화적 스트레스 및 이로 인한 뇌신경세포 사멸을 측정한 결과, 눈개승마 아세트산에틸 분획물(EFAD)의 유의적인 뇌신경세포 보호효과를 확인할 수 있었다. 추가적으로 다당류 분해 효소인 알파글루코사이드가수분해효소 억제효과 및 아세틸콜린 분해 효소인 아세틸콜린에스터가수분해효소 억제효과를 살펴봄으로써 혈당 상승 억제효과와 뇌신경전달물질의 세포 내 유지 효과를 확인하였다. 마지막으로 눈개승마 아세트산에틸 분획물(EFAD)의 주요 페놀성 물질을 확인하기 위해 HPLC분석을 한 결과 카페산으로 추정되었다. 본 연구 결과들을 고려할 때, 눈개승마는 고혈당 지연 또는 개선을 통한 고혈당 예방 소재로서의 가능성뿐만 아니라 이로 인해 야기되는 산화적 스트레스로부터 뇌신경 세포를 보호함으로써 고혈당에 의한 대사성 뇌신경질환 예방 소재로도 활용 가능성이 있을 것이라 판단된다.

Keywords

References

  1. Crane PK, Walker R, Hubbard RA, Li G, Nathan DM, Zheng H, Haneuse S, Craft S, Montine TJ, Kahn SE, McCormick W, McCurry SM, Bowen JD, Larson EB. Glucose levels and risk of dementia. N. Engl. J. Med. 369: 540-548 (2013) https://doi.org/10.1056/NEJMoa1215740
  2. De-Felice DFG, Ferreira ST. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer's disease. Diabetes 63: 2262-2272 (2014) https://doi.org/10.2337/db13-1954
  3. Vincent AM, Callaghan BC, Smith AL, Feldman EL. Diabetic neuropathy: Cellular mechanisms as therapeutic targets. Nat. Rev. Neurol. 7: 573-583 (2011) https://doi.org/10.1038/nrneurol.2011.137
  4. Tesfaye S, Selvarajah D. Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes Metab. Res. Rev. 28: 8-14 (2012)
  5. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39: 44-87 (2007) https://doi.org/10.1016/j.biocel.2006.07.001
  6. Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol. 17: 24-38 (2003) https://doi.org/10.1002/jbt.10058
  7. Levin BE, Dunn-Meynell AA, Routh VH. Brain glucose sensing and body energy homeostasis: role in obesity and diabetes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 276: 1223-1231 (1999) https://doi.org/10.1152/ajpregu.1999.276.5.R1223
  8. Ishige K, Schubert D. Sagara Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic. Biol. Med. 30: 433-446 (2001) https://doi.org/10.1016/S0891-5849(00)00498-6
  9. Youn JS, Shin SY, Wu Y, Hwang JY, Cho JH, Ha YG, Kin JK, Park MJ, Lee SH. Antioxidant and Anti-wrinkling Effects of Aruncus dioicus var. kamtschaticus extract. Korean J. Food Preserv. 19: 393-399 (2012) https://doi.org/10.11002/kjfp.2012.19.3.393
  10. Kim MS, Kim KH, Jo JE, Kim JY, Kim JH, Jang SA, Yook HS. Antioxidative and antimicrobial activities of Aruncus dioicus var. kamtschaticus Hara Extracts. J. Korean Soc. Food Sci. Nutr. 40: 47-55 (2011) https://doi.org/10.3746/jkfn.2011.40.1.047
  11. Lim SH, Lee JW. Methanol extract of goat's-beard (Aruncus dioicus) reduces renal injury by inhibiting apoptosis in a rat model of ischemia-reperfusion. Prev. Nutr. Food Sci. 17: 101-108 (2012) https://doi.org/10.3746/pnf.2012.17.2.101
  12. Jeong CH, Kwak JH, Kim JH, Choi GN, Choi SG, Shim KH, Heo HJ. In vitro antioxidant activities of cocoa phenolics. Korean J. Food Preserv. 17: 100-106 (2010)
  13. Lee JM, Son ES, Oh SS, Han DS. Contents of total flavonoid and biological activities of edible plants. Korean J. Dietary Cult. 16: 504-514 (2001)
  14. Chang ST, Wu JH, Wang SY, Kang PL, Yang NS, Shyur LF. Antioxidant activity of extracts from Acacia confusa bark and heartwood. J. Agr. Food Chem. 49: 3420-3424 (2001) https://doi.org/10.1021/jf0100907
  15. Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA and flow-cytometry. Adv, Protoc. Oxid. Stress II. 594: 57-72 (2009)
  16. Lobner D. Comparison of the LDH and MTT assays for quantifying cell death: Validity for neuronal apoptosis?. J. Neurosci. Methods 96: 147-152 (2000) https://doi.org/10.1016/S0165-0270(99)00193-4
  17. Apostolidis E, Kwon YI, Shetty K. Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innov. Food Sci. Emerg. 8: 46- 54 (2007) https://doi.org/10.1016/j.ifset.2006.06.001
  18. Jeong HR, Jeong JH, Jo YN, Shin JH, Kang MJ, Sung NJ, Heo HJ. Antioxidant and acetylcholinesterase inhibitory effect of aged raw garlic extracts. J. Agri. Life Sci. 42: 113-120 (2011)
  19. Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruma OI, Bahorun T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res. 579: 200-213 (2005) https://doi.org/10.1016/j.mrfmmm.2005.03.023
  20. Ak T, Glin I. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 174: 27-37 (2008) https://doi.org/10.1016/j.cbi.2008.05.003
  21. Millauskas G, Venskutonis PR, Beek TAV. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 85: 231-237 (2004) https://doi.org/10.1016/j.foodchem.2003.05.007
  22. Butterfield DA, Castegna A, Lauderback CM, Drake J. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer's disease brain contribute to neuronal death. Neurobiol. Aging 23: 655-664 (2002) https://doi.org/10.1016/S0197-4580(01)00340-2
  23. Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc. Natl. Acad. Sci. USA 103: 2653-2658 (2005)
  24. Piwkowska A, Rogacka D, Audzeyenka I, Jankowski M, Angielski S. High glucose concentration affects the oxidant-antioxidant balance in cultured mouse podocytes. J. Cell. Biochem. 112: 1661-1672 (2011) https://doi.org/10.1002/jcb.23088
  25. Kumar S, Narwal S, Kumar V, Prakash O. ${\alpha}$-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev. 5: 19-29 (2011) https://doi.org/10.4103/0973-7847.79096
  26. Barbosa Filho JM, Medeiros KCP, Diniz MDFF, Batista LM, Athayde-Filho PF, Silva MS, da-Cunha EVL, Silva Almeida JRG, Quintans-Jnior LJ. Natural products inhibitors of the enzyme acetylcholinesterase. Rev. Bras. Farmacogn. 16: 258-285 (2006) https://doi.org/10.1590/S0102-695X2006000200021
  27. Vo QH, Nguyen PH, Zhao BT, Thi YUN, Nguyen DH, Kim WI, Seo UM, Woo MH. Bioactive constituents from n-butanolic fraction of Aruncus dioicus var. kamtschaticus. Nat. Prod. Sci. 20: 274-280 (2014)
  28. Oboh G, Agunloye OM, Akinyemi AJ, Ademiluyi AO, Adefegha SA. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer's disease and some pro-oxidant induced oxidative stress in rats' brain-in vitro. Neurochem. Res. 38: 413 (2013) https://doi.org/10.1007/s11064-012-0935-6