DOI QR코드

DOI QR Code

Nanoparticles Synthesis and Modification using Solution Plasma Process

  • Mun, Mu Kyeom (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Lee, Won Oh (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Park, Jin Woo (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Kim, Doo San (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Yeom, Geun Young (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Kim, Dong Woo (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
  • 투고 : 2017.09.20
  • 심사 : 2017.11.03
  • 발행 : 2017.11.30

초록

Across the most industry, the demand for nanoparticles is increasing. Therefore, many studies have been carried out to synthesize nanoparticles using various methods. The aim of this paper is to introduce an industry-applicable as well as financially and environmentally effective solution plasma process. The solution plasma process involves fewer chemicals than the traditional kit, and can be used to replace many of the chemical agents employed in previous synthesis of nanoparticles into plasma. In this study, this process is compared to the wet-reaction process that has thus far been widely used in the most industry. Furthermore, the solution plasma process has been classified into four different types (in-solution, out of solution, direct type, and remote type), according to its plasma occurrence position and plasma types. Thus, the source of radicals, nanoparticle synthesis, and modification methods are explained for each design. Lastly, unlike nanoparticles with hydrophilic functional groups that are made inside the solution, a nanoparticle synthesis and modification method to create a hydrophobic functional group is also proposed.

키워드

참고문헌

  1. M. T. Swihart, Current Opinion in Colloid & Interface Science 8, 127 (2003). https://doi.org/10.1016/S1359-0294(03)00007-4
  2. A. Biswas, Z. Marton, J. Kanzow, J. Kruse, V. Zaporojtchenko, F. Faupel, and T. Strunskus, Nano Letters 3, 69 (2003). https://doi.org/10.1021/nl020228f
  3. J. Okumu, C. Dahmen, A. Sprafke, M. Luysberg, G. Von Plessen, and M. Wuttig, J. Appl. Phys. 97, 094305 (2005). https://doi.org/10.1063/1.1888044
  4. P. Saravanan, M. Premkumar, A. Singh, R. Gopalan, and V. Chandrasekaran, J. Alloys Compounds 480, 645 (2009). https://doi.org/10.1016/j.jallcom.2009.01.129
  5. M. Adachi, S. Tsukui, and K. Okuyama, Japanese Journal of Applied Physics 42, L77 (2003). https://doi.org/10.1143/JJAP.42.L77
  6. D. Lopez, I. Abe, and I. Pereyra, Diamond and Related Materials 52, 59 (2015). https://doi.org/10.1016/j.diamond.2014.12.006
  7. B. Xia, H. Huang, and Y. Xie, Materials Science and Engineering: B 57, 150 (1999). https://doi.org/10.1016/S0921-5107(98)00322-5
  8. M. Yamamotoand and M. Nakamoto, Journal of Materials Chemistry 13, 2064 (2003). https://doi.org/10.1039/b307092a
  9. V. Gandhi, R. Ganesan, H. H. Abdulrahman Syedahamed, and M. Thaiyan, The Journal of Physical Chemistry C 118, 9715 (2014). https://doi.org/10.1021/jp411848t
  10. A. Balanta, C. Godard, and C. Claver, Chem. Soc. Rev. 40, 4973 (2011). https://doi.org/10.1039/c1cs15195a
  11. S. L. Hsuand and R. Wu, Mater Lett 61, 3719 (2007). https://doi.org/10.1016/j.matlet.2006.12.040
  12. C. Chinnasamy, B. Jeyadevan, O. Perales-Perez, K. Shinoda, K. Tohji, and A. Kasuya, IEEE Trans. Magn. 38, 2640 (2002). https://doi.org/10.1109/TMAG.2002.801972
  13. M. Zhao, L. Figueroa-Cosme, A. O. Elnabawy, M. Vara, X. Yang, L. T. Roling, M. Chi, M. Mavrikakis, and Y. Xia, Nano Letters 16, 5310 (2016). https://doi.org/10.1021/acs.nanolett.6b02795
  14. P. S. Royand and S. K. Bhattacharya, Catalysis Science & Technology 3, 1314 (2013). https://doi.org/10.1039/c3cy20686f
  15. S. R. Khan, Z. H. Farooqi, A. Ali, R. Begum, F. Kanwal, and M. Siddiq, Mater. Chem. Phys. 171, 318 (2016). https://doi.org/10.1016/j.matchemphys.2016.01.023
  16. D. K. Jha, K. S. Varadarajan, A. B. Patel, and P. Deb, Mater. Chem. Phys. 156, 247 (2015). https://doi.org/10.1016/j.matchemphys.2015.03.016
  17. V. Juttukonda, R. L. Paddock, J. E. Raymond, D. Denomme, A. E. Richardson, L. E. Slusher, and B. D. Fahlman, J. Am. Chem. Soc. 128, 420 (2006). https://doi.org/10.1021/ja056902n
  18. C. E. Hoppe, M. Lazzari, I. Pardinas-Blanco, and M. A. Lopez-Quintela, Langmuir 22, 7027 (2006). https://doi.org/10.1021/la060885d
  19. A. Baykal, S. Güner, and A. Demir, J. Alloys Compounds 619, 5 (2015). https://doi.org/10.1016/j.jallcom.2014.08.237
  20. J. Kim, J. Park, T. Momma, and T. Osaka, Electrochim. Acta 54, 3412 (2009). https://doi.org/10.1016/j.electacta.2008.12.054
  21. S. Kumar-Krishnan, E. Prokhorov, M. Hernandez-Iturriaga, J. D. Mota-Morales, M. Vazquez-Lepe, Y. Kovalenko, I. C. Sanchez, and G. Luna-Barcenas, European Polymer Journal 67, 242 (2015). https://doi.org/10.1016/j.eurpolymj.2015.03.066
  22. H. Bonnemann, W. Brijoux, and T. Joussen, Angewandte Chemie International Edition 29, 273 (1990). https://doi.org/10.1002/anie.199002731
  23. Y. Houand and S. Gao, Journal of Materials Chemistry 13, 1510 (2003). https://doi.org/10.1039/b303226d
  24. W. Liuand and K. Aguey-Zinsou, Journal of Materials Chemistry A 2, 9718 (2014). https://doi.org/10.1039/c4ta01108b
  25. N. Hanzic, T. Jurkin, A. Maksimovic, and M. Gotic, Radiat. Phys. Chem. 106, 77 (2015). https://doi.org/10.1016/j.radphyschem.2014.07.006
  26. M. E. El-Naggar, T. I. Shaheen, M. M. Fouda, and A. A. Hebeish, Carbohydr. Polym. 136, 1128 (2016). https://doi.org/10.1016/j.carbpol.2015.10.003
  27. J. Feng, Y. Ju, J. Liu, H. Zhang, and X. Chen, Anal. Chim. Acta 854, 153 (2015). https://doi.org/10.1016/j.aca.2014.11.024
  28. T. Kruk, K. Szczepanowicz, J. Stefanska, R. P. Socha, and P. Warszynski, Colloids and Surfaces B: Biointerfaces 128, 17 (2015). https://doi.org/10.1016/j.colsurfb.2015.02.009
  29. H. Furusho, K. Kitano, S. Hamaguchi, and Y. Nagasaki, Chemistry of Materials 21, 3526 (2009). https://doi.org/10.1021/cm803290b
  30. G. Saitoand T. Akiyama, Journal of Nanomaterials 16, 299 (2015).
  31. Y. Su, Y. Kuo, C. Lin, and S. Lee, Powder Technol 267, 74 (2014). https://doi.org/10.1016/j.powtec.2014.07.004
  32. E. Takai, T. Kitamura, J. Kuwabara, S. Ikawa, S. Yoshizawa, K. Shiraki, H. Kawasaki, R. Arakawa, and K. Kitano, J. Phys. D 47, 285403 (2014). https://doi.org/10.1088/0022-3727/47/28/285403
  33. S. Ghosh, B. Bishop, I. Morrison, R. Akolkar, D. Scherson, and R. Mohan Sankaran, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 33, 021312 (2015). https://doi.org/10.1116/1.4907407
  34. W. Chiang, C. Richmonds, and R. M. Sankaran, Plasma Sources Sci. Technol. 19, 034011 (2010). https://doi.org/10.1088/0963-0252/19/3/034011
  35. P. Rumbach, M. Witzke, R. M. Sankaran, and D. B. Go, J. Am. Chem. Soc. 135, 16264 (2013). https://doi.org/10.1021/ja407149y
  36. T. Kaneko, S. Takahashi, and R. Hatakeyama, Plasma Phys. Controlled Fusion 54, 124027 (2012). https://doi.org/10.1088/0741-3335/54/12/124027
  37. K. Baba, T. Kaneko, and R. Hatakeyama, Applied Physics Express 2, 035006 (2009). https://doi.org/10.1143/APEX.2.035006
  38. T. Kaneko, K. Baba, T. Harada, and R. Hatakeyama, Plasma Processes and Polymers 6, 713 (2009). https://doi.org/10.1002/ppap.200900029
  39. S. Sato, K. Mori, O. Ariyada, H. Atsushi, and T. Yonezawa, Surface and Coatings Technology 206, 955 (2011). https://doi.org/10.1016/j.surfcoat.2011.03.110
  40. T. Ishijima, H. Sugiura, R. Saito, H. Toyoda, and H. Sugai, Plasma Sources Sci. Technol. 19, 015010 (2009).
  41. M. K. Mun, L. W. Ho, J. W. Park, D. S. Kim, G. Y. Yeom, and D. W. Kim, J. Nanosci. Nanotechnol 17, 1 (2017) https://doi.org/10.1166/jnn.2017.12932
  42. H. Lee, S. H. Park, Y. Park, B. H. Kim, S. Kim, and S. Jung, Chemistry Central Journal 7, 156 (2013). https://doi.org/10.1186/1752-153X-7-156
  43. H. Lee, S. H. Park, S. Jung, J. Yun, S. Kim, and D. Kim, J. Mater. Res. 28, 1105 (2013). https://doi.org/10.1557/jmr.2013.59
  44. S. Yonemori, Y. Nakagawa, R. Ono, and T. Oda, J. Phys. D 45, 225202 (2012). https://doi.org/10.1088/0022-3727/45/22/225202
  45. T. Takamatsu, K. Uehara, Y. Sasaki, H. Miyahara, Y. Matsumura, A. Iwasawa, N. Ito, T. Azuma, M. Kohno, and A. Okino, RSC Advances 4, 39901 (2014). https://doi.org/10.1039/C4RA05936K
  46. E. Takai, S. Ikawa, K. Kitano, J. Kuwabara, and K. Shiraki, J. Phys. D 46, 295402 (2013). https://doi.org/10.1088/0022-3727/46/29/295402
  47. Y. Kim, Y. Hong, K. Baik, G. Kwon, J. Choi, G. Cho, H. Uhm, D. Kim, and E. Choi, Plasma Chemistry & Plasma Processing 34, (2014).
  48. M. A. Bratescu, S. Cho, O. Takai, and N. Saito, The Journal of Physical Chemistry C 115, 24569 (2011). https://doi.org/10.1021/jp207447c
  49. J. Kang, O. L. Li, and N. Saito, Nanoscale 5, 6874 (2013). https://doi.org/10.1039/c3nr01229h
  50. X. Hu, S. Cho, O. Takai, and N. Saito, Crystal Growth & Design 12, 119 (2011).
  51. G. Panomsuwan, N. Saito, and T. Ishizaki, Physical Chemistry Chemical Physics 17, 6227 (2015). https://doi.org/10.1039/C4CP05995F
  52. Y. Sakiyama, D. B. Graves, H. Chang, T. Shimizu, and G. E. Morfill, J. Phys. D 45, 425201 (2012). https://doi.org/10.1088/0022-3727/45/42/425201
  53. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar, Progress in Polymer Science 38, 1232 (2013). https://doi.org/10.1016/j.progpolymsci.2013.02.003
  54. Q. Wang, T. Shen, and S. Tong, Ind Eng Chem Res 55, 10513 (2016). https://doi.org/10.1021/acs.iecr.6b02483
  55. Y. Matsuya, N. Takeuchi, and K. Yasuoka, Electrical Engineering in Japan 188, 1 (2014).
  56. R. Hayashi, H. Obo, N. Takeuchi, and K. Yasuoka, Electrical Engineering in Japan 190, 9 (2015).
  57. N. Takeuchi, Y. Kitagawa, A. Kosugi, K. Tachibana, H. Obo, and K. Yasuoka, J. Phys. D 47, 045203 (2013).
  58. Y. Itikawaand and N. Mason, Journal of Physical and Chemical Reference Data 34, 1 (2005). https://doi.org/10.1063/1.1799251
  59. D. Mariotti, J. Patel, V. Svrcek, and P. Maguire, Plasma Processes and Polymers 9, 1074 (2012). https://doi.org/10.1002/ppap.201200007
  60. G. Cao, Nanostructures and nanomaterials: synthesis, properties and applications, World Scientific (2004).
  61. A. L. Efrosand and M. Rosen, Annual Review of Materials Science 30, 475 (2000). https://doi.org/10.1146/annurev.matsci.30.1.475
  62. N. Saito, J. Hieda, and O. Takai, Thin Solid Films 518, 912 (2009). https://doi.org/10.1016/j.tsf.2009.07.156
  63. S. M. Kim, G. S. Kim, and S. Y. Lee, Mater Lett 62, 4354 (2008). https://doi.org/10.1016/j.matlet.2008.07.025
  64. Z. Yu-Tao, G. Ying, and M. Teng-Cai, Chinese Physics Letters 28, 105201 (2011). https://doi.org/10.1088/0256-307X/28/10/105201
  65. X. Huang, X. Zhong, Y. Lu, Y. Li, A. Rider, S. Furman, and K. Ostrikov, Nanotechnology 24, 095604 (2013). https://doi.org/10.1088/0957-4484/24/9/095604
  66. S. Jin, S. Kim, S. Lee, and J. Kim, Journal of Nanoscience and Nanotechnology 14, 8094 (2014). https://doi.org/10.1166/jnn.2014.9428
  67. N. Shirai, S. Uchida, and F. Tochikubo, Japanese Journal of Applied Physics 53, 046202 (2014). https://doi.org/10.7567/JJAP.53.046202
  68. Q. Shi, N. Vitchuli, J. Nowak, J. M. Caldwell, F. Breidt, M. Bourham, X. Zhang, and M. McCord, European Polymer Journal 47, 1402 (2011). https://doi.org/10.1016/j.eurpolymj.2011.04.002
  69. C. Richmondsand and R. M. Sankaran, Appl. Phys. Lett. 93, 131501 (2008). https://doi.org/10.1063/1.2988283
  70. N. Saito, J. Hieda, and O. Takai, Thin Solid Films 518, 912 (2009). https://doi.org/10.1016/j.tsf.2009.07.156
  71. J. Hieda, N. Saito, and O. Takai, Surface and Coatings Technology 202, 5343 (2008). https://doi.org/10.1016/j.surfcoat.2008.06.092
  72. Q. Chen, T. Kaneko, and R. Hatakeyama, Chemical Physics Letters 521, 113 (2012). https://doi.org/10.1016/j.cplett.2011.11.065
  73. J. Patel, L. Nemcova, P. Maguire, W. Graham, and D. Mariotti, Nanotechnology 24, 245604 (2013). https://doi.org/10.1088/0957-4484/24/24/245604
  74. X. Huang, Y. Li, and X. Zhong, Nanoscale Research Letters 9, 572 (2014). https://doi.org/10.1186/1556-276X-9-572
  75. M. A. Bratescu, S. Cho, O. Takai, and N. Saito, The Journal of Physical Chemistry C 115, 24569 (2011). https://doi.org/10.1021/jp207447c
  76. N. Kulbe, O. Hofft, A. Ulbrich, S. Zein El Abedin, S. Krischok, J. Janek, M. Polleth, and F. Endres, Plasma Processes and Polymers 8, 32 (2011). https://doi.org/10.1002/ppap.201000067
  77. S. Kim, B. H. Kim, M. C. Chung, H. Ahn, S. Kim, H. Kim, and S. Jung, Journal of Nanoscience and Nanotechnology 13, 1997 (2013). https://doi.org/10.1166/jnn.2013.6971
  78. M. Tokushige, T. Nishikiori, and Y. Ito, J. Appl. Electrochem. 39, 1665 (2009). https://doi.org/10.1007/s10800-009-9856-8
  79. E. Acayanka, A. Tiya Djowe, S. Laminsi, C. Tchoumkwe, S. Nzali, A. Poupi Mbouopda, P. Ndifon, and E. Gaigneaux, Plasma Chemistry & Plasma Processing 33, (2013).
  80. I. GyoaKoo, M. SeokaLee, J. HeeaShim, J. HwanaAhn, and W. MooaLee, Journal of Materials Chemistry 15, 4125 (2005). https://doi.org/10.1039/b508420b
  81. E. Omurzak, J. Jasnakunov, N. Mairykova, A. Abdykerimova, A. Maatkasymova, S. Sulaimankulova, M. Matsuda, M. Nishida, H. Ihara, and T. Mashimo, Journal of Nanoscience and Nanotechnology 7, 3157 (2007). https://doi.org/10.1166/jnn.2007.804
  82. J. Patel, L. Nemcova, P. Maguire, W. Graham, and D. Mariotti, Nanotechnology 24, 245604 (2013). https://doi.org/10.1088/0957-4484/24/24/245604
  83. Y. Liu, D. Sun, S. Askari, J. Patel, M. Macias-Montero, S. Mitra, R. Zhang, W. F. Lin, D. Mariotti, and P. Maguire, Sci. Rep. 5, 15765 (2015). https://doi.org/10.1038/srep15765
  84. P. Bruggemanand C. Leys, J. Phys. D 42, 053001 (2009). https://doi.org/10.1088/0022-3727/42/5/053001
  85. M. M. Hefny, C. Pattyn, P. Lukes, and J. Benedikt, J. Phys. D 49, 404002 (2016). https://doi.org/10.1088/0022-3727/49/40/404002
  86. R. Kumar, P. Cheang, and K. Khor, J. Mater. Process. Technol. 113, 456 (2001). https://doi.org/10.1016/S0924-0136(01)00611-2
  87. B. Sun, M. Sato, and J. S. Clements, J. Electrostatics 39, 189 (1997). https://doi.org/10.1016/S0304-3886(97)00002-8
  88. T. Ishijima, H. Hotta, H. Sugai, and M. Sato, Appl. Phys. Lett. 91, 121501 (2007). https://doi.org/10.1063/1.2783209
  89. P. Bruggeman, T. Verreycken, M. A. Gonzalez, J. L. Walsh, M. G. Kong, C. Leys, and D. C. Schram, J. Phys. D 43, 124005 (2010). https://doi.org/10.1088/0022-3727/43/12/124005
  90. Y. Kim, Y. Hong, K. Baik, G. Kwon, J. Choi, G. Cho, H. Uhm, D. Kim, and E. Choi, Plasma Chemistry & Plasma Processing 34, (2014).
  91. K. Ninomiya, T. Ishijima, M. Imamura, T. Yamahara, H. Enomoto, K. Takahashi, Y. Tanaka, Y. Uesugi, and N. Shimizu, J. Phys. D 46, 425401 (2013). https://doi.org/10.1088/0022-3727/46/42/425401
  92. K. Ninomiya, T. Ishijima, M. Imamura, T. Yamahara, H. Enomoto, K. Takahashi, Y. Tanaka, Y. Uesugi, and N. Shimizu, J. Phys. D 46, 425401 (2013). https://doi.org/10.1088/0022-3727/46/42/425401
  93. J. Li, X. Shao, Q. Zhou, M. Li, and Q. Zhang, Appl. Surf. Sci. 265, 663 (2013). https://doi.org/10.1016/j.apsusc.2012.11.072
  94. B. Chen, Y. Gan, C. Zhu, J. Fei, Y. Jiang, L. Wang, X. Gao, X. He, W. Cai, and Z. Li, IEEE Trans. Plasma Sci. 44, 3369 (2016). https://doi.org/10.1109/TPS.2016.2616899
  95. P. Bruggeman, F. Iza, D. Lauwers, and Y. A. Gonzalvo, J. Phys. D 43, 012003 (2009).
  96. P. Bruggeman, F. Iza, P. Guns, D. Lauwers, M. G. Kong, Y. A. Gonzalvo, C. Leys, and D. C. Schram, Plasma Sources Sci. Technol. 19, 015016 (2009).
  97. P. Bruggeman, G. Cunge, and N. Sadeghi, Plasma Sources Sci. Technol. 21, 035019 (2012). https://doi.org/10.1088/0963-0252/21/3/035019
  98. H. Uchiyama, Q. Zhao, M. A. Hassan, G. Andocs, N. Nojima, K. Takeda, K. Ishikawa, M. Hori, and T. Kondo, PloS One 10, e0136956 (2015). https://doi.org/10.1371/journal.pone.0136956
  99. C. Liu, T. Kumakura, K. Ishikawa, H. Hashizume, K. Takeda, M. Ito, M. Hori, and J. Wu, Plasma Sources Sci. Technol. 25, 065005 (2016). https://doi.org/10.1088/0963-0252/25/6/065005
  100. T. Verreycken, D. Schram, C. Leys and P. Bruggeman, Plasma Sources Sci. Technol. 19, 045004 (2010). https://doi.org/10.1088/0963-0252/19/4/045004

피인용 문헌

  1. In-Liquid Plasma Process for Size- and Shape-Controlled Synthesis of Silver Nanoparticles by Controlling Gas Bubbles in Water vol.11, pp.6, 2018, https://doi.org/10.3390/ma11060891