DOI QR코드

DOI QR Code

Three Unrecorded Fungal Species from Fecal and Freshwater Samples in Korea

  • Nguyen, Thuong T.T. (Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Pangging, Monmi (Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Lee, Hyang Burm (Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University)
  • Received : 2017.11.17
  • Accepted : 2017.11.27
  • Published : 2017.12.01

Abstract

While evaluating fungal diversity in fecal and freshwater samples in Korea, three fungal strains, CNUFC-GHD83-1, CNUFC-RD8126, and CNUFC-YR2-1, were isolated from specific habitats including grasshopper and rat feces, and freshwater samples in Korea. On the basis of the morphological characteristics and phylogenetic analysis of the internal transcribed spacer (ITS) and 28S rDNA, the isolates CNUFC-GHD83-1, CNUFC-RD8126, and CNUFC-YR2-1 were identified as Albifimbria terrestris, Cephaliophora tropica, and Mariannaea aquaticola, respectively. These species have not been previously described in Korea.

Keywords

References

  1. Cantrell SA, Dianese JC, Fell J, Gunde-Cimerman N, Zalar P. Unusual fungal niches. Mycologia 2011;103:1161-74. https://doi.org/10.3852/11-108
  2. Richardson MJ. Diversity and occurrence of coprophilous fungi. Mycol Res 2001; 105:387-402. https://doi.org/10.1017/S0953756201003884
  3. Jones EB, Hyde KD, Pang KL. Freshwater fungi and fungal-like organisms. Boston: De Gruyter; 2014.
  4. Angel K, Wicklow DT. Decomposition of rabbit feces: an indication of the significance of the coprophilous microflora in energy flow schemes. J Ecol 1974;62:429-37. https://doi.org/10.2307/2258989
  5. Thilagam L, Nayak BK, Nanda A. Studies on the diversity of coprophilous microfungi from hybrid cow dung samples. Int J PharmTech Res 2015;8:135-8.
  6. Stejskal V, Hubert J, Kubatova A, Vanova M. Fungi associated with rodent feces in stored grain environment in the Czech Republic. J Plant Dis Prot 2005;112:98-102.
  7. Nyberg A, Persson IL. Habitat differences of coprophilous fungi on moose dung. Mycol Res 2002;106:1360-6. https://doi.org/10.1017/S0953756202006597
  8. Mead LJ, Khachatourians GG, Jones GA. Microbial ecology of the gut in laboratory stocks of the migratory grasshopper, Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae). Appl Environ Microbiol 1988;54:1174-81.
  9. Li GJ, Hyde KD, Zhao RL, Hongsanan S, Abdel-Aziz FA, Abdel-Wahab MA, Alvarado P, Alves-Silva G, Ammirati JF, Ariyawansa HA, et al. Fungal diversity notes 253-366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 2016;78:1-237. https://doi.org/10.1007/s13225-016-0366-9
  10. Tibpromma S, Hyde KD, Jeewon R, Maharachchikumbura SS, Liu JK, Bhat DJ, Gareth Jones EB, McKenzie EH, Camporesi E, Bulgakov TS, et al. Fungal diversity notes 491-602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 2017; 83:1-261. https://doi.org/10.1007/s13225-017-0378-0
  11. Nguyen TT, Lee SH, Bae S, Jeon SJ, Mun HY, Lee HB. Characterization of two new records of Zygomycete species belonging to undiscovered taxa in Korea. Mycobiology 2016;44:29-37. https://doi.org/10.5941/MYCO.2016.44.1.29
  12. Nguyen TT, Paul NC, Lee HB. Characterization of Paecilomyces variotii and Talaromyces amestolkiae in Korea based on the morphological characteristics and multigene phylogenetic analyses. Mycobiology 2016;44:248-59. https://doi.org/10.5941/MYCO.2016.44.4.248
  13. Shearer CA. The freshwater Ascomycetes. Nova Hedwigia 1993;56:1-33.
  14. Lombard L, Houbraken J, Decock C, Samson RA, Meijer M, Réblová M, Groenewald JZ, Crous PW. Generic hyper-diversity in Stachybotriaceae. Persoonia 2016;36:156-246. https://doi.org/10.3767/003158516X691582
  15. Thaxter R. New or peculiar North American Hyphomycetes. III. Bot Gaz 1903;35: 153-9. https://doi.org/10.1086/328332
  16. Tanabe Y, Nagahama T, Saikawa M, Sugiyama J. Phylogenetic relationship of Cephaliophora to nematophagous hyphomycetes including taxonomic and nomenclatural emendations of the genus Lecophagus. Mycologia 1999:91:830-5. https://doi.org/10.2307/3761536
  17. Mathews MS, Kuriakose T. Keratitis due to Cephaliophora irregularis Thaxter. J Med Vet Mycol 1995;33:359-60. https://doi.org/10.1080/02681219580000691
  18. Morrison AS, Lockhart SR, Bromley JG, Kim JY, Burd EM. An environmental Sporothrix as a cause of corneal ulcer. Med Mycol Case Rep 2013;2:88-90. https://doi.org/10.1016/j.mmcr.2013.03.002
  19. Seifert K, Morgan-Jones G, Grams W, Kendrick B. The genera of hyphomycetes. Utrecht: CBS-KNAW Fungal Biodiversity Centre; 2011.
  20. Ruszkiewicz-Michalska M, Knysak P, Skrobek I, Gwiazda A, Piskorski S, Zelazna- Wieczorek J. Cephaliophora tropica: a third European record. Mycotaxon 2017;132: 445-51. https://doi.org/10.5248/132.445
  21. Samson RA. Paecilomyces and some allied hyphomycetes. Stud Mycol 1974;6:1-119.
  22. Samuels GJ, Seifert KA. Two new species of Nectria with Stilbella and Mariannaea anamorphs. Sydowia 1991;43:249-63.
  23. Cai L, Kurniawati E, Hyde KD. Morphological and molecular characterization of Mariannaea aquaticola sp. nov. collected from freshwater habitats. Mycol Prog 2010; 9:337-43. https://doi.org/10.1007/s11557-009-0641-1
  24. Nonaka K, Kaneta T, Omura S, Masuma R. Mariannaea macrochlamydospora, a new hyphomycete (Nectriaceae) from soil in the Bonin Islands, Japan. Mycoscience 2015; 56:29-33. https://doi.org/10.1016/j.myc.2014.02.001
  25. Hyde KD, Goh TK. Fungi on submerged wood in a small stream on Mt. Lewis, North Queensland, Australia. Muelleria 1997;10:145-57.
  26. Tang L, Hyun MW, Yun YH, Suh DY, Kim SH, Sung GH. New record of Mariannaea elegans var. elegans in Korea. Mycobiology 2012;40:14-9. https://doi.org/10.5941/MYCO.2012.40.1.014
  27. Tang L, Hyun MW, Yun YH, Suh DY, Kim SH, Sung GH, Choi HK. Mariannaea samuelsii isolated from a bark beetle-infested elm tree in Korea. Mycobiology 2012;40:94-9. https://doi.org/10.5941/MYCO.2012.40.2.94
  28. White TJ, Bruns TD, Lee SB, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. p. 315-22.
  29. Lee HB. Molecular phylogenetic status of Korean strain of Podosphaera xanthii, a causal pathogen of powdery mildew on Japanese thistle (Cirsium japonicum) in Korea. J Microbiol 2012;50:1075-80. https://doi.org/10.1007/s12275-012-2618-z
  30. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876-82. https://doi.org/10.1093/nar/25.24.4876
  31. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95-8.
  32. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013;30:2725-9. https://doi.org/10.1093/molbev/mst197
  33. Hu DM, Wang M, Cai L. Phylogenetic assessment and taxonomic revision of Mariannaea. Mycol Prog 2017;16:271-83. https://doi.org/10.1007/s11557-016-1252-2
  34. Hansen K, Perry BA, Dranginis AW, Pfister DH. A phylogeny of the highly diverse cup-fungus family Pyronemataceae (Pezizomycetes, Ascomycota) clarifies relationships and evolution of selected life history traits. Mol Phylogenet Evol 2013;67:311-35. https://doi.org/10.1016/j.ympev.2013.01.014
  35. Webster J. Presidential address: Coprophilous fungi. Trans Br Mycol Soc 1970;54:161-80.
  36. Sarrocco S. Dung-inhabiting fungi: a potential reservoir of novel secondary metabolites for the control of plant pathogens. Pest Manag Sci 2016;72:643-52. https://doi.org/10.1002/ps.4206
  37. Goh TK, Hyde KD. Biodiversity of freshwater fungi. J Ind Microbiol 1996;17:328-45. https://doi.org/10.1007/BF01574764