DOI QR코드

DOI QR Code

Role of MAPK Signaling Pathways in Regulating the Hydrophobin Cryparin in the Chestnut Blight Fungus Cryphonectria parasitica

  • So, Kum-Kang (Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Kim, Dae-Hyuk (Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University)
  • Received : 2017.10.01
  • Accepted : 2017.10.15
  • Published : 2017.12.01

Abstract

We assessed the regulation of cryparin, a class II hydrophobin, using three representative mitogen-activated protein kinase (MAPK) pathways in Cryphonectria parasitica. Mutation of the CpSlt2 gene, an ortholog of yeast SLT2 in the cell wall integrity (CWI) pathway, resulted in a dramatic decrease in cryparin production. Similarly, a mutant of the CpBck1 gene, a MAP kinase kinase kinase gene in the CWI pathway, showed decreased cryparin production. Additionally, mutation of the cpmk1 gene, an ortholog of yeast HOG1, showed decreased cryparin production. However, mutation of the cpmk2 gene, an ortholog of yeast Kss1/Fus3, showed increased cryparin production. The easy-wet phenotype and accumulation of the cryparin transcript in corresponding mutants were consistent with the cryparin production results. In silico analysis of the promoter region of the cryparin gene revealed the presence of binding motifs related to downstream transcription factors of CWI, HOG1, and pheromone responsive pathways including MADS-box- and Ste12-binding domains. Real-time reverse transcriptase PCR analyses indicated that both CpRlm1, an ortholog of yeast RLM1 in the CWI pathway, and cpst12, an ortholog of yeast STE12 in the mating pathway, showed significantly reduced transcription levels in the mutant strains showing lower cryparin production in C. prasitica. However, the transcription of CpMcm1, an ortholog of yeast MCM1, did not correlate with that of the mutant strains showing downregulation of cryparin. These results indicate that three representative MAPK pathways played a role in regulating cryparin production. However, regulation varied depending on the MAPK pathways: the CWI and HOG1 pathways were stimulatory, whereas the pheromone-responsive MAPK was repressive.

Keywords

References

  1. Wessels JG. Hydrophobins: proteins that change the nature of the fungal surface. Adv Microb Physiol 1997;38:1-45.
  2. Wosten HA. Hydrophobins: multipurpose proteins. Annu Rev Microbiol 2001;55:625-46. https://doi.org/10.1146/annurev.micro.55.1.625
  3. Carpenter CE, Mueller RJ, Kazmierczak P, Zhang L, Villalon DK, Van Alfen NK. Effect of a virus on accumulation of a tissue-specific cell-surface protein of the fungus Cryphonectria (Endothia) parasitica. Mol Plant Microbe Interact 1992;5:55-61. https://doi.org/10.1094/MPMI-5-055
  4. Kazmierczak P, Kim DH, Turina M, Van Alfen NK. A hydrophobin of the chestnut blight fungus, Cryphonectria parasitica, is required for stromal pustule eruption. Eukaryot Cell 2005;4:931-6. https://doi.org/10.1128/EC.4.5.931-936.2005
  5. Zhang L, Villalon D, Sun Y, Kazmierczak P, Van Alfen NK. Virus-associated down-regulation of the gene encoding cryparin, an abundant cell-surface protein from the chestnut blight fungus, Cryphonectria parasitica. Gene 1994;139:59-64. https://doi.org/10.1016/0378-1119(94)90523-1
  6. Kwon BR, Kim MJ, Park JA, Chung HJ, Kim JM, Park SM, Yun SH, Yang MS, Kim DH. Assessment of the core cryparin promoter from Cryphonectria parasitica for heterologous expression in filamentous fungi. Appl Microbiol Biotechnol 2009;83:339-48. https://doi.org/10.1007/s00253-009-1906-y
  7. Deng F, Allen TD, Hillman BI, Nuss DL. Comparative analysis of alterations in host phenotype and transcript accumulation following hypovirus and mycoreovirus infections of the chestnut blight fungus Cryphonectria parasitica. Eukaryot Cell 2007;6:1286-98. https://doi.org/10.1128/EC.00166-07
  8. Park SM, Choi ES, Kim MJ, Cha BJ, Yang MS, Kim DH. Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress. Mol Microbiol 2004;51:1267-77. https://doi.org/10.1111/j.1365-2958.2004.03919.x
  9. Park JA, Kim JM, Park SM, Kim DH. Characterization of CpSte11, a MAPKKK gene of Cryphonectria parasitica, and initial evidence of its involvement in the pheromone response pathway. Mol Plant Pathol 2012;13:240-50. https://doi.org/10.1111/j.1364-3703.2011.00742.x
  10. Choi ES, Chung HJ, Kim MJ, Park SM, Cha BJ, Yang MS, Kim DH. Characterization of the ERK homologue CpMK2 from the chestnut blight fungus Cryphonectria parasitica. Microbiology 2005;151(Pt 5):1349-58. https://doi.org/10.1099/mic.0.27796-0
  11. Sun Q, Choi GH, Nuss DL. Hypovirus-responsive transcription factor gene pro1 of the chestnut blight fungus Cryphonectria parasitica is required for female fertility, asexual spore development, and stable maintenance of hypovirus infection. Eukaryot Cell 2009;8:262-70. https://doi.org/10.1128/EC.00338-08
  12. Turina M, Zhang L, Van Alfen NK. Effect of Cryphonectria hypovirus 1 (CHV1) infection on Cpkk1, a mitogen-activated protein kinase kinase of the filamentous fungus Cryphonectria parasitica. Fungal Genet Biol 2006;43:764-74. https://doi.org/10.1016/j.fgb.2006.05.004
  13. Kim JM, Lee JG, Yun SH, So KK, Ko YH, Kim YH, Park SM, Kim DH. A mutant of the Bck1 homolog from Cryphonectria parasitica resulted in sectorization with an impaired pathogenicity. Mol Plant Microbe Interact 2016;29:268-76. https://doi.org/10.1094/MPMI-08-15-0185-R
  14. So KK, Ko YH, Chun J, Kim JM, Kim DH. Mutation of the Slt2 ortholog from Cryphonectria parasitica results in abnormal cell wall integrity and sectorization with impaired pathogenicity. Sci Rep 2017;7:9038. https://doi.org/10.1038/s41598-017-09383-y
  15. Herskowitz I. MAP kinase pathways in yeast: for mating and more. Cell 1995;80:187-97. https://doi.org/10.1016/0092-8674(95)90402-6
  16. Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 1999;19:2435-44. https://doi.org/10.1128/MCB.19.4.2435
  17. Gustin MC, Albertyn J, Alexander M, Davenport K. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1998;62:1264-300.
  18. Xu JR. Map kinases in fungal pathogens. Fungal Genet Biol 2000;31:137-52. https://doi.org/10.1006/fgbi.2000.1237
  19. Wösten HA, Scholtmeijer K. Applications of hydrophobins: current state and perspectives. Appl Microbiol Biotechnol 2015;99:1587-97. https://doi.org/10.1007/s00253-014-6319-x
  20. Alshahni MM, Shimizu K, Yoshimoto M, Yamada T, Nishiyama Y, Arai T, Makimura K. Genetic and phenotypic analyses of calcineurin A subunit in Arthroderma vanbreuseghemii. Med Mycol 2016;54:207-18. https://doi.org/10.1093/mmy/myv088
  21. Han JH, Lee HM, Shin JH, Lee YH, Kim KS. Role of the MoYAK1 protein kinase gene in Magnaporthe oryzae development and pathogenicity. Environ Microbiol 2015;17: 4672-89. https://doi.org/10.1111/1462-2920.13010
  22. Soanes DM, Kershaw MJ, Cooley RN, Talbot NJ. Regulation of the MPG1 hydrophobin gene in the rice blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 2002;15: 1253-67. https://doi.org/10.1094/MPMI.2002.15.12.1253
  23. Sammer D, Krause K, Gube M, Wagner K, Kothe E. Hydrophobins in the life cycle of the ectomycorrhizal basidiomycete Tricholoma vaccinum. PLoS One 2016;11: e0167773. https://doi.org/10.1371/journal.pone.0167773
  24. Yue X, Que Y, Deng S, Xu L, Oses-Ruiz M, Talbot NJ, Peng Y, Wang Z. The cyclin dependent kinase subunit Cks1 is required for infection-associated development of the rice blast fungus Magnaporthe oryzae. Environ Microbiol 2017;19:3959-81. https://doi.org/10.1111/1462-2920.13796
  25. Wang Y, Tian L, Xiong D, Klosterman SJ, Xiao S, Tian C. The mitogen-activated protein kinase gene, VdHog1, regulates osmotic stress response, microsclerotia formation and virulence in Verticillium dahliae. Fungal Genet Biol 2016;88:13-23. https://doi.org/10.1016/j.fgb.2016.01.011
  26. Kim DH, Rigling D, Zhang L, Van Alfen NK. A new extracellular laccase of Cryphonectria parasitica is revealed by deletion of Lac1. Mol Plant Microbe Interact 1995;8:259-66. https://doi.org/10.1094/MPMI-8-0259
  27. Powell WA, Van Alfen NK. Differential accumulation of poly(A)+ RNA between virulent and double-stranded RNAinduced hypovirulent strains of Cryphonectria (Endothia) parasitica. Mol Cell Biol 1987;7:3688-93. https://doi.org/10.1128/MCB.7.10.3688
  28. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870-4. https://doi.org/10.1093/molbev/msw054
  29. Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 1992;89:10915-9. https://doi.org/10.1073/pnas.89.22.10915
  30. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992;8:275-82.
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406-25.
  32. Bailey TL, Johnson J, Grant CE, Noble WS. The MEME Suite. Nucleic Acids Res 2015;43:W39-49. https://doi.org/10.1093/nar/gkv416
  33. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009;37:W202-8. https://doi.org/10.1093/nar/gkp335
  34. de Nadal E, Casadome L, Posas F. Targeting the MEF2-like transcription factor Smp1 by the stress-activated Hog1 mitogenactivated protein kinase. Mol Cell Biol 2003;23:229-37. https://doi.org/10.1128/MCB.23.1.229-237.2003
  35. Su JC, Lin KL, Chien CM, Tseng CH, Chen YL, Chang LS, Lin SR. Furano-1,2-naphthoquinone inhibits EGFR signaling associated with G2/M cell cycle arrest and apoptosis in A549 cells. Cell Biochem Funct 2010;28:695-705. https://doi.org/10.1002/cbf.1710
  36. Shore P, Sharrocks AD. The ETS-domain transcription factors Elk-1 and SAP-1 exhibit differential DNA binding specificities. Nucleic Acids Res 1995;23:4698-706. https://doi.org/10.1093/nar/23.22.4698
  37. Qu X, Yu B, Liu J, Zhang X, Li G, Zhang D, Li L, Wang X, Wang L, Chen J, et al. MADS-box transcription factor SsMADS is involved in regulating growth and virulence in Sclerotinia sclerotiorum. Int J Mol Sci 2014;15:8049-62. https://doi.org/10.3390/ijms15058049