DOI QR코드

DOI QR Code

Time-Varying Seismogenic Coulomb Electric Fields as a Probable Source for Pre-Earthquake Variation in the Ionospheric F2-Layer

  • Kim, Vitaly P. (Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation, Russian Academy of Sciences (IZMIRAN)) ;
  • Hegai, Valery V. (Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation, Russian Academy of Sciences (IZMIRAN)) ;
  • Liu, Jann Yenq (Institute of Space Science, National Central University) ;
  • Ryu, Kwangsun (Satellite Technology Research Center, Korea Advanced Institute of Science and Technology) ;
  • Chung, Jong-Kyun (Korea Astronomy & Space Science Institute)
  • Received : 2017.09.25
  • Accepted : 2017.11.29
  • Published : 2017.12.15

Abstract

The electric coupling between the lithosphere and the ionosphere is examined. The electric field is considered as a timevarying irregular vertical Coulomb field presumably produced on the Earth's surface before an earthquake within its epicentral zone by some micro-processes in the lithosphere. It is shown that the Fourier component of this electric field with a frequency of 500 Hz and a horizontal scale-size of 100 km produces in the nighttime ionosphere of high and middle latitudes a transverse electric field with a magnitude of ~20 mV/m if the peak value of the amplitude of this Fourier component is just 30 V/m. The time-varying vertical Coulomb field with a frequency of 500 Hz penetrates from the ground into the ionosphere by a factor of ${\sim}7{\times}10^5$ more efficient than a time independent vertical electrostatic field of the same scale size. The transverse electric field with amplitude of 20 mV/m will cause perturbations in the nighttime F region electron density through heating the F region plasma resulting in a reduction of the downward plasma flux from the protonosphere and an excitation of acoustic gravity waves.

Keywords

References

  1. Artru J, Farges T, Lognonne P, Acoustic waves generated from seismic surface waves: propagation properties determined from Doppler sounding observations and normal-mode modelling, Geophys. J. Int. 158, 1067-1077 (2004). https://doi.org/10.1111/j.1365-246X.2004.02377.x
  2. Astafyeva EI, Afraimovich EL, Long-distance traveling ionospheric disturbances caused by the great Sumatra-Andaman earthquake on 26 December 2004, Earth Planets Space 58, 1025-1031 (2006). https://doi.org/10.1186/BF03352607
  3. Calais E, Minster JB, GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett. 22, 1045-1048 (1995). https://doi.org/10.1029/95GL00168
  4. Daneshvar MRM, Freund FT, Remote sensing of atmospheric and ionospheric signals prior to the ${M_w}8.3$ Illapel earthquake, Chile 2015, Pure Appl. Geophys. 174, 11-45 (2017). https://doi.org/10.1007/s00024-016-1366-0
  5. Ducic V, Artru J, Lognonne P, Ionospheric remote sensing of the Denali earthquake Rayleigh surface waves, Geophys. Res. Lett. 30, 1951 (2003). https://doi.org/10.1029/2003GL017812
  6. Hao J, Tang TM, Li DR, Progress in the research of atmospheric electric field anomaly as an index for short-impending prediction of earthquakes, J. Earthq. Pred. Res. 8, 241-255 (2000).
  7. Hegai VV, Kim VP, Nikiforova LI, A possible generation mechanism of acoustic-gravity waves in the ionosphere before strong earthquakes, J. Earthq. Pred. Res. 6, 584-589 (1997).
  8. Hegai VV, Kim VP, Liu JY, The ionospheric effect of atmospheric gravity waves excited prior to strong earthquake, Adv. Space Res. 37, 653-659 (2006). https://doi.org/10.1016/j.asr.2004.12.049
  9. Hegai VV, Kim VP, Liu JY, On a possible seismomagnetic effect in the topside ionosphere, Adv. Space Res. 56, 1707-1713 (2015). https://doi.org/10.1016/j.asr.2015.07.034
  10. Hegai VV, Kim VP, Legen'ka AD, Ionospheric F2-layer perturbations observed after the M8.8 Chile earthquake on February 27, 2010, at long distance from the epicenter, J. Astron. Space Sci. 34, 1-5 (2017). https://doi.org/10.5140/JASS.2017.34.1.1
  11. Huang CC, Liu JYG, Seismo-ionospheric anomalies in DEMETER observations during the Wenchuan M7.9 earthquake, in 2014 AGU Fall Meeting, San Francisco, CA, 15-19 Dec 2014.
  12. Kelley MC, Swartz WE, Heki K, Apparent ionospheric total electron content variations prior to major earthquakes due to electric fields created by tectonic stresses, J. Geophys. Res. 122, 6689-6695 (2017). https://doi.org/10.1002/2016JA023601
  13. Kim VP, Hegai VV, On the variability of the ionospheric F2-layer during the quietest days in December 2009, J. Astron. Space Sci. 33, 273-278 (2016). https://doi.org/10.5140/JASS.2016.33.4.273
  14. Kim VP, Liu JY, Hegai VV, Modeling the pre-earthquake electrostatic effect on the F region ionosphere, Adv. Space Res. 50, 1524-1533 (2012). https://doi.org/10.1016/j.asr.2012.07.023
  15. Kuo CL, Huba JD, Joyce G, Lee LC, Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges, J. Geophys. Res. 116, A10317 (2011). https://doi.org/10.1029/2011ja016628
  16. Kuo CL, Lee LC, Huba JD, An improved coupling model for the lithosphere-atmosphere-ionosphere system, J. Geophys. Res. 119, 3189-3205 (2014). https://doi.org/10.1002/2013JA019392
  17. Leonard RS, Barnes Jr. RA, Observation of ionospheric disturbances following the Alaska earthquake, J. Geophys. Res. 70, 1250-1253 (1965). https://doi.org/10.1029/JZ070i005p01250
  18. Li M, Parrot M, Statistical analysis of an ionospheric parameter as a base for earthquake prediction, J. Geophys. Res. 118, 3731-3739 (2013). https://doi.org/10.1002/jgra.50313
  19. Liu HF, Ding B, Zhao J, Li L, Hu L, et al., Ionospheric response following the ${M_w}7.8$ Gorkha earthquake on 25 April 2015, J. Geophys. Res. 122, 6495-6507 (2017). https://doi.org/10.1002/2016JA023079
  20. Liu JY, Chen YI, Chuo YJ, Chen CS, A statistical investigation of preearthquake ionospheric anomaly, J. Geophys. Res. 111, A05304 (2006). https://doi.org/10.1029/2005JA011333
  21. Liu JY, Chen YI , Chen CH, Hattori K, Temporal and spatial precursors in the ionospheric Global Positioning System (GPS) total electron content observed before the 26 December 2004 M9.3 Sumatra-Andaman earthquake, J. Geophys. Res. 115, A09312 (2010). https://doi.org/10.1029/2010JA015313
  22. Liu JY, Le H , Chen YI, Chen CH, Liu L, et al., Observations and simulations of seismoionospheric GPS total electron content anomalies before the 12 January 2010 M7 Haiti earthquake, J. Geophys. Res. 116, A04302 (2011). https://doi.org/10.1029/2010JA015704
  23. Maruyama T, Yusupov K, Akchurin A, Ionosonde tracking of infrasound wavefronts in the thermosphere launched by seismic waves after the 2010 M8.8 Chile earthquake, J. Geophys. Res. 121, 2683-2692 (2016). https://doi.org/10.1002/2015JA022260
  24. Oyama KI, Kakinami Y, Liu JY, Kamogawa M, Kodama T, Reduction of electron temperature in low latitude ionosphere at 600 km before and after large earthquakes, J. Geophys. Res. 113, A11317 (2008). https://doi.org/10.1029/2008JA013367
  25. Oyama KI, Kakinami Y, Liu JY, Abdu MA, Cheng CZ, Latitudinal distribution of anomalous ion density as a precursor of a large earthquake, J. Geophys. Res. 116, A04319 (2011). https://doi.org/10.1029/2010JA015948
  26. Pulinets S, Boyarchuk K, Ionospheric Precursors of Earthquakes (Springer, Berlin, 2004).
  27. Rishbeth H, Day-to-day ionospheric variations in a period of high solar activity, J. Atmos. Terr. Phys. 55, 165-171 (1993). https://doi.org/10.1016/0021-9169(93)90121-E
  28. Rishbeth H, Mendillo M, Patterns of F2-layter variability, J. Atmos. Sol.-Terr. Phys. 63, 1661-1680 (2001). https://doi.org/10.1016/S1364-6826(01)00036-0
  29. Rolland LM, Lognonne P, Munekane H, Detection and modeling of Rayleigh wave induced patterns in the ionosphere, J. Geophys. Res. 116 A05320 (2011). https://doi.org/10.1029/2010JA016060
  30. Row RV, Evidence of long-period acoustic-gravity waves launched into the F region by the Alaskan earthquake of March 28, 1964, J. Geophys. Res. 71, 343-345 (1966). https://doi.org/10.1029/JZ071i001p00343
  31. Rycroft MJ, Odzimek A, Arnold NF, Fullekrug M, Kulak A, et.al., New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites, J. Atmos. Sol.-Terr. Phys. 69, 2485-2509 (2007). https://doi.org/10.1016/j.jastp.2007.09.004
  32. Zhang X, Shen X, Parrot M, Zeren Z, Ouyang X, et al., Phenomena of electrostatic perturbations before strong earthquakes (2005-2010) observed on DEMETER, Nat. Hazards Earth Syst. Sci. 12, 75-83 (2012). https://doi.org/10.5194/nhess-12-75-2012
  33. Zhang X, Shen X, Zhao S, Yao L, Quyang X, et al., The characteristics of quasistatic electric field perturbations observed by DEMETER satellite before large earthquakes, Journal of Asian Earth Sciences 79, 42-52 (2014). https://doi.org/10.1016/j.jseaes.2013.08.026
  34. Zhao B, Wang M, Yu T, Wan W, Lei J, et al., Is an unusual large enhancement of ionospheric electron density linked with the 2008 great Wenchuan earthquake?, J. Geophys. Res. 113, A11304 (2008). https://doi.org/10.1029/2008JA013613