
ETRI Journal, Volume 38, Number 5, October 2016        © 2016  Selahattin Kosunalp et al.   911 
http://dx.doi.org/10.4218/etrij.16.0115.1030 

This paper presents the description, practical 
implementation, and stability analysis of a recently 
proposed, energy-efficient, medium access control 
protocol for wireless sensor networks, ALOHA-Q, which 
employs a reinforcement-learning framework as an 
intelligent transmission strategy. The channel 
performance is evaluated through a simulation and 
experiments conducted using a real-world test-bed. The 
stability of the system against possible changes in the 
environment and changing channel conditions is studied 
with a discussion on the resilience level of the system. A 
Markov model is derived to represent the system behavior 
and estimate the time in which the system loses its 
operation. A novel scheme is also proposed to protect the 
lifetime of the system when the environment and channel 
conditions do not sufficiently maintain the system 
operation. 
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I. Introduction 

Wireless sensor networks (WSNs) have appeared as a 
rapidly growing research topic owing to their potential 
application areas, ranging from environmental monitoring to 
industry, military, and health applications [1]. A typical WSN is 
expected to consist of a potentially large number of 
inexpensive sensor nodes with the capabilities of sensing, 
computation, and communication, each of which is likely to be 
battery-powered, small in size, and able to communicate over 
short distances. In many cases, a distinctive feature of a WSN 
is that the sensor nodes are randomly deployed in remote areas, 
which often makes recharging or replacing the batteries 
difficult. A typical WSN needs to be able to self-organize and 
be robust to environmental changes such as node failures. 

Sensor nodes in a WSN share the same communication 
medium, which may result in a packet transmission failure 
through multiple concurrent accesses. Medium access control 
(MAC) protocols have the responsibility of controlling and 
regulating users in accessing a shared transmission medium. A 
huge number of MAC protocols have been proposed to bring 
to light significant improvements in energy efficiency, channel 
throughput, delay performance, and fairness [2], [3]. Although 
most proposed protocols have provided significant 
performance improvements, the design of the protocols has 
resulted in considerable complexity and overhead. Taking real 
sensor platform architectures into consideration, that is, simple 
devices with limited power and memory, the practicality of 
MAC protocols must be considered based on hardware 
limitations and constraints. Many of the proposed schemes 
have only been evaluated through simulations, which may not 
reflect the actual performance of the protocols owing to 
unrealistic assumptions. Therefore, it is important to develop 
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simpler protocols to provide flexibility for practical 
implementation.  

ALOHA-based schemes have a key benefit of simplicity but 
suffer from a blind transmission strategy as the nodes are 
allowed to transmit packets as soon as they become ready for 
transmission, requiring no pre-coordination with other users 
accessing the transmission medium. This drawback limits the 
achievable maximum channel throughput because it may result 
in collisions. In the case of slotted-ALOHA, time is divided 
into discrete slots, and each user is required to transmit at the 
beginning of a slot. The use of an intelligent slot selection 
technique will potentially improve the channel performance. 
Reinforcement learning (RL) has been applied to slotted-
ALOHA as an effective transmission strategy, enhancing the 
channel performance significantly in both single- and multi-
hop communication scenarios [4], [5]. Q-Learning is an RL 
algorithm used for an intelligent slot selection strategy [6]. RL 
provides a means of learning the behavior of a system by 
interacting with a dynamic environment through trial-and-error. 
It allows the determination of an optimum transmission 
strategy from the consequences of a device’s action on its 
environment. The advantage of learning for slotted-ALOHA is 
that users are able to find unique transmission slots in a fully 
distributed manner, resulting in a scheduled outcome. 

This is the first time that ALOHA-Q has been practically 
evaluated to achieve perfect scheduling, thereby improving  
the channel performance significantly. The performance of 
ALOHA-Q is compared with a well-known MAC protocol,  
Z-MAC [6]. We investigated its resilience to a loss of 
convergence in order to consider the weakness of the scheme 
associated with packet losses during a steady state. A steady 
state occurs when all nodes have found a unique slot. The level 
of resilience to a loss of convergence is presented according to 
various packet loss probabilities. A Markov model is derived to 
estimate the time to loss of convergence for a single user. A 
novel technique is then proposed to protect the convergence 
lifetime in the presence of packet loss. 

The rest of this paper is organized as follows. Section II 
presents related studies highlighting the main features of 
existing MAC protocols for WSNs. Section III introduces a 
brief description and practical performance of ALOHA-Q as 
well as the experimental setup used for this study. A stability 
analysis of ALOHA-Q with the derived Markov model is 
provided in Section IV. The proposed scheme is described in 
Section V. Finally, Section VI provides some concluding 
remarks regarding this research. 

II. Related Works 

The overwhelming majority of MAC protocols proposed for 

WSNs are contention-based and inherently distributed, but 
suffer from overhearing, collisions, idle-listening, and re-
transmissions. Although schedule-based protocols can alleviate 
these problems by dynamically assigning transmission 
schedules, these schemes introduce complexity and overhead, 
and time synchronization is their key requirement.  

Sensor MAC (S-MAC) [7], perhaps the most studied MAC 
scheme, is a representative contention-based protocol, and 
many recent protocols center on the concept of S-MAC. S-
MAC incorporates a tunable periodic listening and sleep 
schedule in which each node turns its radio off to preserve 
energy. Each node determines its own schedule based on 
virtual clusters that are formed by neighboring nodes. S-MAC 
follows the traditional four-way handshaking technique 
(RTS/CTS/DATA/ACK) for collision and overhearing 
avoidance. The schedule needs to be synchronized among 
neighboring nodes. To update the schedule, a small SYNC 
packet is exchanged with neighbors during the listening period. 
S-MAC adopts a message passing technique to reduce the 
contention latency. A long message is fragmented into many 
small fragments that are sent in bursts. The duty-cycle period in 
S-MAC is of a fixed duration, and energy can therefore be 
unnecessarily wasted at low traffic load levels. 

Timeout MAC (T-MAC) [8] extends S-MAC by introducing 
an adaptive duty-cycle to shorten energy consumption while 
maintaining reasonable throughput. The active period is 
dynamically ended if nothing is heard after a timeout period. 
As in S-MAC, the nodes wake up at the beginning of each 
active period, listen to the medium to sense any activity, and 
return to sleep mode if no activation event occurs. T-MAC 
allows the nodes to remain awake after completion of a packet 
transmission or reception to observe potential incoming traffic. 
T-MAC introduces a future request-to-send (FRTS) to solve 
the early sleeping problem, which means that if a node loses 
contention, the destination will switch to sleep mode. Using 
FRTS packets, the intended destination is informed of the 
future packet reception time so the destination will wake up at 
the appropriate time. 

RL-MAC [9] is a reinforcement learning-based protocol that 
adaptively adjusts the sleeping schedule based on local and 
neighboring observations. For a local observation, each node 
records the number of successfully transmitted and received 
packets to be a part of the determination of the duty cycle. As 
for neighboring observations, the number of failed attempts is 
added to the header to inform the receiver, which saves energy 
by minimizing the number of missed packets (early sleeping). 
The key property of this scheme is that the nodes can infer the 
state of other nodes using a Markov decision process. 

Low-energy adaptive clustering hierarchy (LEACH) [10] is 
a self-organizing, adaptive clustering-based MAC and routing 
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protocol. The concept of LEACH is to divide nodes into local 
clusters in which one node is nominated as the cluster-head in 
each cluster. The cluster-head is responsible for coordinating 
the cluster and forwarding the data from nodes in its cluster to 
the sink. To balance the energy dissipation among the nodes, 
the role of the cluster-head node is randomly rotated among the 
nodes within a cluster based on the amount of energy left in the 
current cluster-head. LEACH assumes that each node in a 
cluster can directly communicate with the cluster-head. The 
nodes in a cluster transmit their data using a TDMA schedule 
created by the cluster-head. Hence, the nodes can switch the 
radio off when they are not scheduled to transmit or receive, 
thus saving energy consumption in these nodes. In each cluster, 
a different CDMA code is used for transmission to avoid 
interference with a nearby cluster (inter-cluster). 

The traffic-adaptive medium access protocol (TRAMA) [11], 
a TDMA-based algorithm, is a good example of a schedule-
based protocol whereby the nodes arrange common schedules 
by exchanging their neighborhood information with their 
neighbors. The time is divided into single slots for both data 
and signaling transmissions. Each node selects a slot based on a 
distributed election algorithm according to their current traffic 
information. TRAMA results in significant processing burden 
and high overhead associated with scheduling.  

Zebra MAC (Z-MAC) has been chosen for a performance 
comparison because it is an effective MAC scheme that 
provides high channel utilization and energy-efficiency. It is 
therefore worth describing the underlying basics of Z-MAC. Z-
MAC [12] is a hybrid protocol that combines the advantages of 
TDMA and CSMA. It uses a CSMA scheme at low traffic 
loads and a TDMA scheme at higher traffic loads. It has a 
preliminary set-up phase if there is a neighbor discovery. A 
neighbor discovery is conducted by sending ping packets to 
one-hop neighbors. Each node generates a list of two-hop 
neighbors. Using the two-hop neighborhood, Z-MAC applies a 
distributed slot assignment algorithm to make sure that any two 
nodes in the two-hop neighborhood are not given the same slot, 
thereby reducing the potential for collisions between two-hop 
neighbors. In Z-MAC, each user has its own slot, but if the user 
does not have any data to transmit, other users may borrow the 
slot.  

Unfortunately, most of the protocols introduced in this 
section have only been evaluated using simulation tools. Z-
MAC has been extensively implemented practically in both 
single- and multi-hop topologies. Its effectiveness in terms of 
channel utilization has been demonstrated. S-MAC has also 
been implemented in practice, the aim of which was to 
measure the energy consumption. None of the other protocols 
have been practically evaluated. Computationally complex and 
overwhelming algorithms may render the MAC protocols 

infeasible. We conclude that low complexity and overhead are 
important for many practical deployments owing to the 
limitations and constraints of low-cost, simple sensor devices. 
ALOHA-Q therefore represents a good example of simplicity 
while providing perfect scheduling in an intelligent way with 
minimal additional overhead. It only has an initial poorer 
performance phase based on a Q learning algorithm in which 
each node learns to explore a unique transmission slot that will 
be dedicated to the node at the end of the phase. Eventually, if 
there are a sufficient number of slots, all nodes will find a 
unique transmission slot and keep transmitting there. Many 
contention-based schemes rely on CSMA features to perform 
channel sensing and hand-shake procedures, which introduce 
additional overhead. The only overhead of the ALOHA-Q 
scheme is an acknowledgement (ACK) packet, which is 
commonly implemented in MAC protocols to confirm the 
successful reception of a packet. Compared with schedule-
based schemes, the RL process provides a similar collision-free 
channel access with no pre-coordination with other users 
accessing the channel requiring no scheduling information 
exchange. It only requires a small amount of time to converge 
to an optimal steady state of one slot assigned per node.  

III. Q-Learning Based ALOHA: ALOHA-Q 

In this section, the ALOHA-Q protocol is briefly described 
along with its fundamental design properties and underlying 
features. The throughput performance of ALOHA-Q is then 
presented practically to validate its performance with respect to 
simulations under ideal conditions (that is, no packet loss). The 
performance evaluations have been carried out under two main 
topologies, a single-hop and a linear-chain, which are described 
in detail later in this section. 

1. Protocol Description  

A repeating frame structure is introduced within slotted-
ALOHA. Each frame consists of a number of slots, N, which 
should be appropriately set in order to allow each node      
to have a unique slot. In a single-hop scenario, N is optimally 
set to the number of nodes in the system. However, in a multi-
hop scenario, N is determined by a local transmission and 
interference range of the nodes, network topology, the density 
of the nodes, and number of source nodes along the route. A 
node is allowed to transmit at most one packet in a frame. The 
generated packets are queued first-in-first-out with the packet at 
the head being transmitted. For each node, every slot in the 
repeating frame is given a Q value, which is initialized to zero 
upon startup. The Q values are subsequently updated according 
to (1). 
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Fig. 1. Example of the slot selection technique, α = 0.1. 
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Qt+1(i, s) = Qt(i, s) + α(R – Qt(i, s)),	 	 	 	 	 	 	 	 	 (1) 
 

where i indicates the present node, s is the preferred slot, R is 
the current reward, and α is the learning rate. A transmitter will 
always choose the slot within a frame with the highest Q-value. 
If more than one slot has the same Q value, the transmitter 
randomly chooses one of them. If the packet transmission is 
successful, R takes a value of Rr = +1, which constitutes a 
reward. If the packet transmission fails, then R takes a 
punishment value of Rp = –1. Consequently, a sequence of 
successful transmissions using the same slot will cause the 
associated Q-value to increase, finally converging on a value 
very close to +1. There is no consensus on the choice of values 
for Rr and Rp, but it has been shown [4], [5] that +1 and –1 
respectively produce a convergence to +1 for a successful slot 
choice, and zero for all other non-chosen slots in that frame. 
We define this condition as being a steady state slot because, 
for a particular slot; it will always choose a high Q slot. The 
learning rate, α, is an important parameter that controls the 
speed of convergence. It determines to what extent the recently 
acquired information will be considered.  

We now present an illustrative example of the Q-learning 
algorithm for five slots per frame. In Fig. 1, the first packet is 
transmitted on slot 1 of the frame. This is randomly chosen 
because all Q values are equal to zero. Because that packet was 
successfully transmitted, the Q value for slot 1 is incremented 
according to (1). However, in this case, the next packet 
transmission in slot 1 fails. The Q value falls immediately to  
–0.01 and another slot is selected randomly. In this scenario, 
slot 4 continues to be successful for the next N packets. We see 
the Q value approaching a value of +1. We will later show that 
it takes many more successful transmissions for the Q value to 
approach +1 than it takes to reduce back toward zero owing to 
successive packet transmission failures. 

Previous studies have shown that ALOHA-Q reaches a 
steady-state operation following a quick period of convergence 
during a simulation, where a packet loss is due solely to 
collisions. The behavior of the algorithm after convergence   
in a practical environment characterized by a more significant 
packet loss is unclear, and is therefore considered in Section IV. 
This leads to the observation that the scheme has low resilience 
against packet loss and that convergence is quickly lost. This 
motivated the development of a modified punishment strategy, 
which is introduced and evaluated in Section V.  

2. Experimental Setup  

We use MicaZ nodes [13], which are IEEE 802.15.4-
compliant devices featuring an ATmega128L low-power 
microcontroller and a CC2420 [14] radio transceiver operating 
at 2.4 GHz. They have 4 Kbytes of data memory and      
128 kbytes of programmable flash, and provide a data rate   
of 250 kbits/s. Our nodes run on TinyOS [15], which is an 
efficient component-based and event-driven operating system, 
and provides software support for the application design 
requirements of MicaZ nodes.  

TinyOS provides only one packet format, which consists of a 
fixed-sized header, the payload, and a cyclic redundancy check 
(CRC). The length of the header depends on the specific radio 
platforms. The CC2420 header is 11 bytes long. A 2-byte  
CRC follows the last field in the packet format, which is 
automatically generated by the hardware. The length of the 
payload can be varied up to 114 bytes because the maximum 
complete packet length provided by IEEE 802.15.4 is     
127 bytes. These three fields form a MAC protocol data   
unit (MPDU). The MPDU is automatically prefixed with a 
preamble and start of frame delimiter based on the radio and 
frame length by the microcontroller when transmitting a packet. 
Figure 2 shows a complete packet structure that complies with 
IEEE 802.15.4.  

In our implementation, the SHR, PHR, MHR, PAYLOAD, 
and CRC fields comprise 5 bytes, 1 byte, 11 bytes, 114 bytes, 
and 2 bytes, respectively. The control packets are normally 
expected to be very small without a PAYLOAD. We therefore 
created another packet type, the acknowledgement packet, 
which has a 5-byte SHR, a 1-byte PHR, an 11-byte MHR, and  
 

  

Fig. 2. IEEE 802.15.4-compliant packet format. 
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Fig. 3. Application environments: (a) single- and (b) multi-hop 
scenarios. 
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a 2-byte CRC. 

For the single-hop scenario, the performance is evaluated for 
an indoor topology, as depicted in Fig. 3(a), in an unobstructed 
area with line-of-sight communication, which comprises 12 
users. All nodes are in the range of each other, are equidistant 
from the receiver, and transmit at the same power level. Each 
node generates packets and sends them directly to the receiver. 
All nodes have the same mean packet inter-arrival time, which 
is exponentially distributed and synchronized by the receiver. 
After the deployment of the nodes, the transmitters wait in the 
receive mode for a specific packet called a Hello packet to be 
sent from the receiver. Once the receiver is powered up, and 
after a certain time, it transmits a Hello packet to all nodes. This 
synchronizes the transmitters to enable their packet generation 
process to run concurrently.  

For a multi-hop scenario, the performance is evaluated under 
a linear network topology comprising five nodes, as presented 
in Fig. 3(b). Here, the packets are generated by node 1 (source) 
to be transferred through the line hop-by-hop to node 5 (sink), 
meaning that each packet travels through nodes 2, 3, and 4,  
and arrives at node 5. Each node transmits at the minimum 
transmission power level that allows them to receive the 
packets from only one hop neighbors. The interference range is 

  

Table 1. Experiment parameters. 

Parameters Values 

Channel bit rate 250 kbits/s 

Data packet length (ALOHA-Q) 1,064 bits 

Data packet length (Z-MAC) 840 bits 

ACK packet length (simulation) 20 bits 

ACK packet length (experiment) 152 bits 

Slot length (simulation) 1,100 bits 

Slot length (experiment) 1,250 bits 

Experiment period 100,000 slots 

Learning rate (α) 0.1 

 

also one-hop. To synchronize the nodes at the onset of the 
repeating frames simultaneously, the Hello packet strategy 
described above is used through a network coordinator 
broadcasting at the maximum transmission power level, which 
therefore covers all nodes. To avoid a short-term clock drift, a 
modest guard band is included in the slot timings (as indicated 
from the parameters listed in Table 1). This eliminates any 
potential packet losses that may occur owing to this potential 
problem. For a longer operation, the central receiver or network 
coordinator can be set to periodically transmit Hello packets for 
the purpose of resynchronization. Alternatively, some form of 
established distributed synchronization algorithm can be 
implemented. 

Energy efficiency is achieved by only waking up the nodes 
in their dedicated slot, thereby removing the cost of idle 
listening. In a single-hop scenario, it is straightforward to only 
wake up the nodes in specific slots. However, the nodes have to 
be awake for reception and transmission in a multi-hop 
scenario. To achieve this, the transmitter informs the 
corresponding receiver regarding its future transmission pattern, 
particularly the number of future packets to be transmitted in 
the same current slot. This is called informed receiving (IR), 
the details of which can be found in our previous paper [4]. 

Channel throughput is the percentage of channel capacity 
used. One Erlang represents the continuous use of a channel. 
The theoretical maximum throughput of a single-hop scenario 
for the experiment parameters given in Table 1 is close to 0.85 
Erlangs (1,064/1,250 bits). In a five-hop scenario, with the 
transmission and interference ranges of a single hop, two 
adjacent nodes in each direction along the chain have to select 
different transmission slots to avoid collisions, and thus one in 
every three nodes can utilize the same transmission slot, and 
the optimum frame size becomes three slots per frame. 
Therefore, the theoretical maximum throughput at the sink is 
0.33 Erlangs. A small guard band is left between the slots in 
order to mitigate the propagation delays and any timing offsets. 
During all simulations, the default values of Z-MAC (eight 
contention slots for slot owners, and an extra 32 contention 
slots for non-owners) are used.  

3. Steady-State Results 

To evaluate the performance of ALOHA-Q, we 
implemented it in both OPNET and MicaZ/TinyOS using the 
parameters given above. In addition, ideal performances of 
ALOHA-Q [4], [5] and Z-MAC were simulated based on a 
very small acknowledgement packet length. We also 
implemented a conventional slotted-ALOHA on the testbed. 
Figure 4 presents the results of all scenarios for varying traffic 
levels.  
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Fig. 4. Channel throughput: (a) single- and (b) multi-hop scenarios.
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The generated traffic is defined in Erlang units, which 
represent the proportion of the channel occupied by all users. 
This is used to calculate the average packet inter-arrival time 
equally for each user, as obtained below. 

.
  .

.

L N
I

G D
                    (2) 

Here, I denotes the average packet inter-arrival time, L is the 
packet length in bits, N is the number of nodes in the network, 
G is the desired generated traffic load in Erlangs, and D is the 
data rate of the channel in bits/s. 

In the single-hop scenario, the simulation results show that 
the ideal throughput of ALOHA-Q increases linearly and 
reaches a maximum of 0.95 Erlangs, which corresponds to 
every node finding a unique slot. The practical and simulation 
results of the throughput, using the same parameters as the 
practical system, exhibit a similar increasing trend but to a 
lower maximum throughput of approximately 0.85 Erlangs 
because there is an ACK packet overhead of 0.15 Erlangs. Z-
MAC achieves a lower maximum throughput than ALOHA-Q 
owing to a greater overhead and potential for contention (nodes 
can potentially contend for their non-owned slots). On the other 
hand, the practical maximum throughput of the conventional 

slotted-ALOHA (nearly 0.39 Erlangs) with 12 users is slightly 
higher than its theoretical achievable throughput (0.368 Erlangs 
based on the assumption of an infinite number of nodes) [16].  

In the multi-hop scenario, the throughput using ALOHA-Q 
grows linearly and reaches its maximum limit. All transmitted 
packets are transferred to the sink node under steady-state 
conditions. Slotted-ALOHA can only provide a throughput of 
0.13 Erlangs owing to its inefficient transmission strategy. The 
throughput of ALOHA-Q stabilizes at 0.33 Erlangs with 
increasing traffic levels because it depends on the frame size. 
Figure 4 shows that ALOHA-Q achieves a much higher 
throughput when the traffic load is heavy because the large 
contention windows used for channel sensing limit the 
performance of Z-MAC. 

IV. Stability Properties of ALOHA-Q 

This section studies the stability of the ALOHA-Q protocol 
against possible changes in the environment and changing 
channel conditions, particularly packet losses during a steady 
state. We first begin with the main reasons for a packet loss that 
can occur at any time in a wireless network. The Q-value of a 
slot represents the efficiency of knowledge obtained on the slot 
and the willingness of this slot to be chosen. Therefore, the 
increments and decrements of the Q-value based on the outputs 
of the transmissions are very important to deeply understand 
the behavior of the network. The decline/accrual of the Q-value 
is presented to demonstrate how the Q-value of a slot 
converges to a value close to +1, and how quickly it reduces to 
lose its convergence. To estimate the convergence loss time in 
the presence of a packet loss after convergence, a Markov 
model is derived where each state holds a Q-value based on 
successful/failure transmissions. The convergence loss time of 
a single slot is then presented. To understand the behavior of 
the whole network against packet loss, the network 
performance is also observed with respect to various packet 
failure ratios. 

1. Issue of Packet Loss 

Wireless sensor networks can have a reputation for an 
unpredictable quality of wireless communication because they 
are fairly densely deployed in harsh, inaccessible environments. 
A number of factors govern the performance of wireless 
communication. These focus around the environment, the 
network topology, and the devices. We note that three 
important reasons for packet loss are multi-path interference, 
hardware architecture, and scalability of the network size.   

Depending on the environmental characteristics, multi-path 
interference can occur, which results in duplicate packets being 
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received over small time differences that may result in their 
destruction. Sensor devices constrained in their bandwidth and 
energy cannot tolerate multi-path effects having insufficient 
frequency diversity [17].  

Owing to the very modest hardware architecture of sensor 
nodes, a loss of packets will occur in practice. Our previous 
study [18] demonstrated that a typical popular sensor node, the 
IRIS node, cannot operate effectively under high traffic loads 
because it is unable to switch quickly from reception to 
transmission mode to send back acknowledgement packets. 
Consequently, depending on the traffic load level, a certain 
proportion of the acknowledgement packets may not be   
sent. Hence, even though a packet is received successfully,  
the transmitting node will assume it to be lost as no 
acknowledgement packet is received. To overcome this 
problem, we proposed employing a guard band between the 
transmission and reception modes, although this wastes 
channel resources. We therefore conclude that there might be a 
possibility of losing some packets in WSNs because of the 
sensor hardware, and that such loss may not be predictable. 

An important and desirable attribute of MAC protocols is 
scalability with the network size, and some new nodes may 
need to be deployed later. A good MAC scheme must 
comfortably meet such a change. However, during the addition 
of new nodes to the network, some packets might be lost 
owing to the arrangement of new transmission schedules. 
Depending on the application, this process may need to protect 
the current schedules of existing users.  

2. Level of Resilience to Loss of Convergence 

Although ALOHA-Q provides perfect scheduling, allowing 
no packet loss from collisions after convergence, as validated 
through simulations and in a real-world test-bed, a packet loss 
can still occur in practice for the reasons described above. We 
now systematically analyze the level of resilience to a loss of 
convergence in the presence of packet loss. The learning rate 
(α) is an important parameter because it has a significant effect 
on the Q-value updates. Therefore, various learning rates are 
simulated to demonstrate the behavior of the Q-value of a 
single-node unique slot, as shown in Fig 5. Establishing the 
best case in which all the packets are successful in a particular 
slot from the initialization of the system is very important for a 
deeper understanding of the behavior of the Q-value updates. 
Figure 5(a) presents the Q-value of a slot with consecutive 
successful transmissions. 

We can see that the learning rate determines, as expected 
according to (1), the accrual of the Q-value. Smaller values 
result in a longer time to converge to a Q-value of 1. The 
numbers of consecutive successful transmissions required to 

 

Fig. 5. Behaviour of the Q-value update: (a) best case where all 
packets are successfully transmitted and (b) worst case in 
which all packets are lost. 
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achieve convergence for a single user with respect to the 
learning rates of 0.1, 0.05, 0.03, and 0.01 are 50, 100, 150, and 
400, respectively. However, as a negative reward has more 
impact on the Q-value when the Q-value is positive, the 
number of successive failures required to result in a Q-value 
reduction to zero is therefore significantly fewer. We assume 
that the rest of the Q-values are set to zero after convergence, 
and thus once the Q-value of a unique slot falls back to zero, it 
will lead the associated user to seek to find a new slot. We see 
from Fig. 5(b) that only seven consecutive failures cause the Q 
value to return to zero (loss of convergence) at a learning rate 
of 0.1. Considering that a packet loss will occur in the real 
world, the risk of this rapid decline in Q value is significant, 
leading to a loss of convergence and subsequent quality of 
service. The system will not have a good level of robustness 
and will not be protected from infrequent collisions or small 
changes in the environment and channel conditions.  

3. Markov Model  

We now derive a Markov model to represent the behavior of 
the system after convergence. Each node has a unique slot, the 
Q-value of which is very close to 1, where the rest of the slots 
have Q-values of zero. Each state represents a particular Q-
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value. The Q-value increments based on successful 
transmissions are much smaller than Q-value decrements 
based on failed transmissions. Upward transitions between 
neighboring states correspond to a single success. A single 
failure results in a downward transition across multiple states.  
The total number of states therefore depends only on the 
learning rate. After a transmission, the Q-value is updated and a 
state transition occurs. If a transmission succeeds, the process 
moves forward. If not, the process moves backward and 
chooses the state that has the closest Q-value. An example of 
the Markov model is shown in Fig. 6 for a learning rate of 0.1. 
There are 50 states required for convergence, as previously 
noted, for a learning rate of 0.1.  

Let p denote the probability of a successful packet 
transmission based upon the factors previously outlined. This 
will be the probability of moving forward, pk, k+1, where k = 0, 1, 
2, … ,49. It will also be the probability of staying in the last 
state, p50, 50. The probability of moving backwards, pk, l, will be 
(1 – p), where l is the corresponding state after an unsuccessful 
transmission (for example, k = 15, l = 9). These state transition 
probabilities can be formulated as follows: 

 Pk, k+1 = p,                   (3) 

Pk, l = 1– p.                  (4) 

4. Loss of Convergence Time Estimation 

In a practical deployment, a packet loss can occur at different 
rates. In our previous study [18], around half of the  
acknowledgement packets were not sent from the receiver 
because of the hardware issues at a channel load of 1 Erlang. 
Under a real situation, the ratio of packet loss may vary. We will 
not necessarily observe a sustained sequence of consecutive 
failures. Therefore, the relationship between packet loss ratio and 
the time to lose convergence is important to establish.   

The approach presented in [19] for ALOHA-Q provides the 
convergence time of a whole network through an analytical 
model. In this model, a state transition probability matrix, P, 
which is a sparse matrix, is considered. Using the notation P2   
to denote the multiplication of P by itself, the elements of P2 are 

(2)
, , ,0

, .
N

i j i m m jm
p p p


                (5) 

Here, pi, j 
(2) represents the transition probability from state i to 

state j through one transition state (two transitions). Similarly, 
the elements in P3 are 

(3) (3)
, , ,0

  ,
N

i j i m m jm
p p p


                  (6) 

which is the probability of moving from state i to state j 
through all possible states after two transition states. Here, Pn is 
referred to as the matrix of state transition probabilities after  
(n – 1) transition states, and thus pi, j

 (n) is the probability of  

 

Fig. 6. Markov model with a learning rate of 0.1. 
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moving from state i to state j after n transitions. To calculate the 
time of the convergence loss, we need the expected number of 
transitions (slots), from the last state to be achieved to all states 
except state zero, which is obtained as follows. 

1

,
1

E{convergence loss time} .N j
n j N

p


 

         (7) 

This is the expected convergence loss time starting with state N. 
A detailed derivation and proof of the model can be found in 
[19]. 

Using our Markov-model based simulation, for a given 
learning rate, the total number of states required for 
convergence is initially calculated. The Q-value of each state is 
then calculated, and the state transitions, up or down, are 
determined. Using a uniformly distributed random number 
generation, different packet loss ratios are artificially created. 
Here, a number is randomly generated within the range of 1 to 
100. This is then compared with a predefined threshold 
determined to create a particular packet loss rate. If the number 
is greater than the threshold, the process moves forward; 
otherwise, it moves backward. To create a 40% loss rate, for 
instance, the threshold is set to 40. The simulation is initialized 
during the final state as the system is assumed to have 
converged, and the following state transitions are undertaken. 
The process is stopped when the process has reached a state of 
zero. The required number of iterations, which is equivalent to 
the number of frames, is then recorded. The simulation is run 
100 times and the average value is taken. 

Using the test-bed, we observed the time (number of frames) 
to lose the convergence for a particular node for a given packet 
loss rate. The receiver sends a certain amount of 
acknowledgement packets using the random number 
generation strategy described above. In this case, some of the 
packet receptions will not be acknowledged, despite these 
packets being successfully received. At the start of the trial, 
each node learns a unique slot. When a node then tries to 
change this slot, it sends a message containing the number of 
frames taken from the beginning to a base station, which is 
connected to a computer to monitor the data packets. We run 
the implementation 100 more times and again take the average. 
Figure 7(a) presents the time (number of frames) before the 
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convergence loss with a different probability of failure. The 
running throughput at the receiver is calculated after every   
10 frames at three different packet loss rates, and is presented in 
Figs. 7(b) and 7(c) for the two scenarios. 

We can see that the practical results of the convergence  
loss time match the results of the Markov model and the 
simulations. The convergence can be lost within 100 frames to 
below a probability failure level of 0.3, whereas within 600 
frames at a probability of failure of 0.2, which is below a level 
of 0.1, the convergence is never lost. Therefore, to provide an 

 
 

Fig. 7. Convergence loss time and overall system behaviour 
against packet loss: (a) average time of convergent loss,
(b) running throughput for a single hop, and (c) running
throughput for multiple hops. 
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efficient operation of the protocol, the probability of failure 
must be less than 0.1, which is referred to as the convergence 
loss point (CLP) in the rest of this paper. The running 
throughput is obtained from initialization through each time 
step (10 frames for a single hop and 100 frames for multiple 
hops), where each curve represents an average of 100 runs. The 
real-time running throughput decreases faster with a reduction 
in the packet success rate.  

V. Proposed Scheme: Punishment Modification Strategy 

In this section, a new punishment scheme is proposed to deal 
with the issue of packet loss that may occur in less ideal 
environments. The performance enhancements through the 
proposed punishment modification are presented. Our scheme is 
shown to ensure a good level of protection against packet loss.   

It was found that the convergence will not be lost if the 
packet loss rate does not exceed 10%. The main objective is to 
maximize the CLP to protect the convergence from an 
unknown instant or long-term change. According to (1), the 
punishment value, assuming a fixed learning rate, plays an 
important role in updating the Q-value. In particular, the use of 
a fixed punishment value (–1) reduces the Q-value more 
quickly when the Q-value is positive. It is therefore clear that 
the use of a reformulated numerical value of the punishment 
can serve to protect the convergence loss. We intend to 
dynamically change the magnitude of the punishment when a 
packet loss occurs after convergence., which will result in the 
Q-value reducing more slowly. 

As we pointed out previously, the number of consecutive 
failures required to lose the convergence is 7, whereas the 
number of consecutive successes required to achieve to the 
convergence is 50. We propose equating this imbalance by 
updating the punishment value when a packet transmission 
fails. In this case, 50 consecutive failures will cause a loss of 
convergence. After a packet failure, the punishment value is re-
calculated to update the Q-value, and thus the process will take 
the previous state in the Markov model. Let us consider the 
two neighboring states to demonstrate the modification of the 
punishment value, as depicted in Fig. 8. 

Here, QN–1 represents the Q-value of state N – 1, and the QN 

is the Q-value of state N. If the packet transmission fails when 
the process is in state N, the new Q-value will be QN–1. If the 
packet transmission succeeds when the process is in state N – 1, 
the new Q-value will be QN. 

QN–1 = QN + α(Rp – QN),              (8) 

QN = QN–1 + α(Rr – QN–1).            (9) 

We then substitute (8) with (9) to obtain the new punishment 
value, which will take the process to the previous state: 
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Fig. 8. Two neighbouring states in the Markov model. 
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Fig. 9. Convergence loss time and overall system behaviour
against packet loss: (a) average time of convergence loss,
(b) running throughput for a single hop, and (c) running
throughput for multiple hops. 
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

 




             (10) 

which is the new punishment equation based on the current  
Q-value. Therefore, after an unsuccessful transmission, the 
punishment value is calculated and the Q-value is updated. 

Similar to the results shown in Fig. 7, we present the results of 
the new punishment scheme obtained from the Markov model 
and simulations. The Markov model results match the average 
results of the simulations. It can be clearly seen that our scheme 
achieves better results, improving the time of convergence loss. 
The CLP is now 0.47, which indicates that the network will 
operate adequately as long as around half of the packets are 
successfully received. Here, we experimentally validate the 
analytical results, implementing the proposed scheme in an 
indoor test-bed. Again, the running throughput is evaluated for 
three loss rates with the convergence already having been 
achieved prior to the start of the test. The practical results prove 
that the system does not lose convergence beyond a loss rate of 
0.47. However, as the loss rate increases, the system loses 
convergence quickly. All results are presented in Fig. 9.  

VI. Conclusion 

This paper thoroughly analyzed the stability properties of a 
recently proposed, energy-efficient MAC protocol for single- 
and multi-hop communications, called ALOHA-Q, which 
combines a slotted-ALOHA, with its benefits of simplicity and 
low computation, and Q-Learning, thereby providing an 
intelligent slot selection strategy. We began with the practical 
implementation issues of ALOHA-Q, which provides perfect 
scheduling under a rapidly achieved steady state. We then 
showed that ALOHA-Q is prone to a loss of convergence in the 
presence of packet losses that are due to changes in the 
environment and the radio conditions. A Markov model 
representing the behavior of a user has been provided and used to 
estimate the time taken to lose the convergence. It was shown 
through the Markov model and a test-bed that the convergence 
can be quickly lost because of a high punishment level. A novel 
punishment technique has been proposed to deal with a low 
packet failure in order to protect the operation of the network. 
The proposed scheme serves to protect the lifetime of the 
convergence by dynamically adjusting the punishment level. 
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