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Currently, web applications are gaining in prevalence. 
In a web application, an input may not be appropriately 
validated, making the web application susceptible to cross-
site scripting (XSS), which poses serious security problems 
for Internet users and websites to whom such trusted web 
pages belong. A taint inference is a type of information 
flow analysis technique that is useful in detecting XSS   
on the client side. However, in existing techniques, two 
current practical issues have yet to be handled properly. 
One is URL rewriting, which transforms a standard URL 
into a clearer and more manageable form. Another is 
HTML sanitization, which filters an input against 
blacklists or whitelists of HTML tags or attributes. In this 
paper, we make an analogy between the taint inference 
problem and the molecule sequence alignment problem in 
bioinformatics, and transfer two techniques related to the 
latter over to the former to solve the aforementioned yet-
to-be-handled-properly practical issues. In particular, in 
our method, URL rewriting is addressed using local 
sequence alignment and HTML sanitization is modeled by 
introducing a removal gap penalty. Empirical results 
demonstrate the effectiveness and efficiency of our method. 
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I. Introduction 

Nowadays, accessing web applications has already become a 
daily routine for many people, such as the checking of emails, 
conducting bank transactions, and visiting social networking 
websites. All kinds of information systems for governments, 
businesses, and individuals are now built as web applications. 
Unfortunately, many web applications are exposed to various 
security vulnerabilities. Among them, cross-site scripting 
(XSS) has emerged as one of the most serious threats on the 
web. XSS is listed second in the top 10 security risks from 
OWASP [1], and fourth in the top 25 most dangerous software 
errors from CWE/SANS [2]. The security problems caused by 
XSS are of great severity. Through injecting malicious scripts 
into trusted web contents, an attacker can gain access to a 
user’s browser; steal a user’s cookies; hijack a user’s sessions; 
transfer confidential data; cause denial of service; and forge 
web requests and responses, as well as perform many other 
types of malicious activities. 

Although a single XSS vulnerability is easy to fix, fixing all 
XSS vulnerabilities in a large web application is a really 
challenging task, which many application programmers cannot 
fully accomplish. Instead of fixing them all, detecting and 
preventing them when they occur is a more feasible way to 
deal with them. To prevent XSS, we should first detect whether 
an attacker is able to exert control over a piece of web content, 
and if so, we should then further detect precisely which parts of 
this content can the attacker inject into. Taint inference is 
proposed to solve this problem. Such a technique is practically 
useful on the client side because it works in a manner similar to 
that of a black box (that is, it compares the input of the user 
with the response of the server); thus, it does not need source 
code and is irrelevant to the underlying server technology. 
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However, some practical issues still remain to be solved. For 
example, more and more websites are using URL rewriting to 
overcome the shortcomings of the standard URL — the 
exposing of the underlying technology of the website, the fact 
that it is neither descriptive nor friendly to users and search 
engines alike. URL rewriting impedes existing taint inference 
techniques in locating and extracting a user input from a  
URL, thus affecting the precision of any resulting inference. 
Moreover, many server applications adopt HTML sanitizers to 
filter potential dangerous tags and attributes in an effort to 
protect against XSS attacks. This also causes problems when it 
comes to trying to match the input of a user with the response 
of the server. To overcome these two problems, we propose a 
new taint inference technique inspired by molecule sequence 
alignment in bioinformatics. Through local sequence alignment, 
a tainted input can be located and inferred automatically within 
the context of URL rewriting, and the imprecision of taint 
inference caused by HTML sanitization can be mitigated by 
introducing a removal gap penalty. We evaluate our technique 
using 18 vulnerabilities in five open-source projects, each with 
108 malicious vectors. Experimental results show that both the 
inference rate and the inference precision are improved 
evidently and that the running overhead is negligible. 

In the reminder of this paper, we first introduce background 
techniques in Section II. Then, we describe the motivation for 
our study in Section III and propose our approach in Section IV. 
Experimental evaluations are reported in Section V. Finally,  
we discuss the related work in Section VI and conclude in 
Section VII. 

II. Background 

1. Cross-Site Scripting 

XSS denotes a kind of code injection attack on a web 
application. Because HTML documents have a flat, serial 
structure comprising a mixture of control statements, 
formatting, and actual content, attackers can inject malicious 
scripts into the content to be responded to by the vulnerable 
application, due to a lack of proper input validation and 
sanitization. As such injected content is delivered from a trusted 
server, the relevant malicious scripts can act under permissions 
that are granted to the vulnerable application. 

XSS can be classified into three different types: reflected, 
stored, and DOM-based XSS. A reflected XSS vulnerability is 
the most common type. These vulnerabilities show up when 
data provided by a web client is used immediately by server-
side scripts to parse and display a page of results. A stored XSS 
vulnerability occurs when malicious data provided by an 
attacker is injected into a vulnerable application’s storage. This 

results in every user that accesses the poisoned web page 
receiving the injected script without the need for any further 
action on behalf of the attacker. A DOM-based XSS is a special 
variant of the reflected XSS, where logic errors in legitimate 
JavaScript and careless usage of client-side data result in XSS 
conditions. In a DOM-based XSS, malicious data need not 
touch a web server; rather, it can be reflected by the JavaScript 
code, fully on the client side. 

Regardless of the different types of XSS, the corresponding 
taint inference algorithms are similar. The differences lie in the 
contexts and contents to be inferred. To simplify illustration, we 
only consider reflected XSS in this paper. 

2. Taint Inference 

XSS attacks occur under the following two conditions: 
▪ Data from an untrusted source is injected into dynamic 

content that is to be sent to a web user. 
▪ The injected content is able to perform malicious activities 

— the likes of which is not anticipated by either the 
developer or the administrator. 

To detect the occurrence of an XSS attack, it is necessary to 
check whether these two conditions have been met. In our 
research, we focus on the first condition and try to solve the 
problems of whether data from an untrusted source has been 
injected and which parts of the response delivered by the server 
are derived from the injected data.  

Fine-grained taint tracking [3]–[7] has been proposed as an 
effective technique for tackling such problems. However, it 
suffers from several drawbacks, such as heavy instruments, 
high overheads, language dependency, and requirement of 
source codes; thus, these drawbacks make it difficult to adopt 
such a technique in production systems. 

To overcome these drawbacks, a new taint inference 
technique is proposed, which infers taints using a black-box 
method by observing and comparing user input requests and 
server output responses. Generally speaking, requests to web 
applications use the HTTP protocol, with standardized ways of 
encoding parameters. Web applications receive the request-
related parameter values, apply simple sanitization or 
normalization operations, and then use the values to retrieve 
some data, or even generate contents containing these values 
and respond to the user. As a result, data flows might be 
identified by comparing input parameter values against all 
possible substrings of outgoing responses. Because client-side 
defenses do not (and need not) access the source code, taint 
inference is preferred rather than taint tracking. An example is 
shown in Fig. 1. The server code is vulnerable due to a lack of 
proper input processing. The solid arrows represent a taint flow 
from the URL request to the HTML response through the 
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Fig. 1. Example of taint inference in detecting XSS vulnerability.

http://www.example.com/prod
uct/viewcatalog.asp?category
=<script>doEvil()</script>
&prodID=15 <html><body> 

The following products are in category
<?=$_GET[‘category’]> : 
…… 
</body></html> <html><body> 

The following products are in category
<script>doEvil()</script> : 
…… 
</body></html> 

URL request 

Server code 

HTML response 

 
 
server code. However, the server code is not available on the 
client side. Taint inference helps us infer the taint flow between 
the URL request and the HTML response, shown by the 
dashed arrow, which discloses the XSS vulnerability concealed 
in the server code. 

In existing techniques, Internet Explorer (IE) [8] uses regular 
expressions to infer taints. From inputs, regular expressions 
from possibly malicious injections are created using heuristics. 
These expressions are then compiled and matched against the 
HTML output. The taint inference algorithm of XSSAuditor 
[9] uses the idea of straight string matching between inputs  
and outputs, considering magic quotes and normalization of 
unicode characters. NoXSS [10] adopts a longest common 
subsequence algorithm, which allows parts of a substring to be 
present in an input parameter while missing in a response. 
XSSFilt [11] relies on an approximate, rather than exact, string 
match to be able to identify taint in the presence of simple 
sanitization or normalization operations used by a web 
application. These techniques have been proven to be useful in 
inferring taints that may cause XSS. Nevertheless, there are still 
some practical issues that need to be further investigated, which 
will be discussed in the next section. 

III. Motivation 

1. URL Rewriting 

URL rewriting aims to improve the appearance of a given 
URL. It adds a layer of abstraction between the files used to 
generate a web page and the URL that is presented to the 
outside world. Most web servers and web frameworks support 
URL rewriting, either directly or through extension modules. 

Normally, a standard URL looks something like the 
following: 
http://www.example.com/product/viewcatalog.asp?category=s
hoes&prodID=15 
They are prevalent in dynamically generated web pages. 
However, there are many problems with a URL of this kind: 

▪ It exposes the underlying technology, which gives potential 
hackers clues as to what they should send along with the 
query string to perform a front-door attack on the site. 

▪ If the language that the website is based on is changed (to 
PHP, for instance), all old URLs will stop working. 

▪ The URL is littered with awkward punctuation, such as the 
question mark and ampersand. 

▪ Many search engines will not index a site in depth if it 
contains links to such dynamic pages. 

Luckily, using rewriting, we can clean up this URL to 
something far more manageable, such as the following: 
http://www.example.com/product/catalog/shoes/15 
This URL is more logical, readable, and memorable and will 
be picked up by search engines. The faux directories are short 
and descriptive. In addition, it looks more permanent. 

Nevertheless, there can be drawbacks as well. A URL is the 
most prevalent input source of XSS. Existing taint inference 
techniques rely on standard parameter encoding of URLs to 
locate and extract user inputs. In such encodings, parameters 
are located after a question mark and separated by an 
ampersand (in a URL). Each parameter has a name and a value 
that are connected with the equals sign. It is easy to parse a 
standard URL to extract parameter values as the user input to 
be inferred. However, in the context of URL rewriting, it is 
hard to extract parameters on the client side, since we do not 
know the rewriting rules of the server; the only thing we can 
determine is that parameters may exist in the URL beyond  
the domain part. Without precise information of the input 
parameters, the effectiveness of existing taint inference 
techniques will reduce dramatically. This motivates us to 
propose a practical method to infer taints without relying on 
exact URL parameter locations. 

2. HTML Sanitation 

HTML sanitization is the process of examining an HTML 
document and producing a new HTML document that 
preserves only those tags that are deemed to be safe. HTML 
sanitization can be used to protect against XSS attacks by 
sanitizing any HTML code submitted by a user. Basic tags for 
changing fonts are often allowed, such as <b>, <i>, <u>, <em>, 
and <strong>, while more advanced tags such as <script>, 
<object>, <embed>, and <link> or some attributes of these tags 
might be removed by the sanitization process. Sanitization is 
typically performed by using either a whitelist or a blacklist 
approach. There are a variety of sanitizers for different 
languages and frameworks, but the principles are the same. 

Unfortunately, existing taint inference techniques do not deal 
with such removal sanitization properly. Specifically, none of 
them considers the continuous removal region caused by HTML 
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Fig. 2. Example of different transformation cases. Original
sequence is S0. After two different transformations, T1

and T2, S0 becomes S1 and S2. Alignments of S1 and S2

against S0 are denoted by A1 and A2, respectively, in
which “_” is introduced as space caused by removal. 

<div id=“abc” onclick=“xyz”>contents</div> 

S0 

<div id=“abc” onclick=“”>contents</div> 

S1 

<div id=“abc” onclick=“xyz”>cntns</div>

S2 

T1 T2 

<div id=“abc” onclick=“_ _ _”>contents</div> 

A1 

<div id=“abc” onclick=“xyz”>c_nt_n_s</div>

A2 

 
 
sanitizers. Consider the example shown in Fig. 2. The distance 
between S0 and S1 is the same as that between S0 and S2, 
because the number of “_” introduced are equal. Nevertheless, 
the transformation from S0 to S1 can be done in only one 
operation, while at least three operations have to happen to 
transform S0 into S2. It is obvious that the former is more 
plausible and close to the removal operation of HTML 
sanitizers. However, existing taint inference techniques either 
reject both S1 and S2 due to mismatch, or treat S1 and S2 as   
the same. They do not distinguish continuous removal and 
separated removal; thus, they are unable to reflect the real 
distribution of the removed region caused by HTML 
sanitization. This motivates us to take such a characteristic of 
HTML sanitization into consideration during taint inference to 
improve the precision. 

IV. Approach 

1. Analogy between Taint Inference and Molecule Sequence 
Alignment 

 Our approach is mainly inspired by the molecule sequence 
alignment technique in bioinformatics [12]. Sequence 
alignment is a way of arranging the sequences of DNA, RNA, 
or protein to identify regions of similarity that may be        
a consequence of functional, structural, or evolutionary 
relationships between the sequences. Aligned sequences of 
nucleotide or amino acid residues are typically represented as 
rows within a matrix. Spaces are inserted between the residues 
so that identical or similar characters are aligned in successive 
columns. If two sequences in an alignment share a common 
ancestor, then mismatches can be interpreted as point mutations 
and spaces as indels (that is, insertion or deletion mutations) 
introduced in one or both lineages in the time since they 
diverged from one another. Sequence alignment has also been 
used for non-biological sequences, such as those present in 
natural language or in financial data. By comparing the  

Table 1. Analogy between sequence alignment and taint inference.

Sequence alignment Taint inference 

Molecule sequence ASCII character sequence 

Semi-global alignment Standard URL 

Local alignment URL rewriting 

Deletion mutation HTML sanitization 

Gap penalty Removal gap penalty 

 

 
similarity between sequence alignment and taint inference, we 
observe an analogy between them, which is shown in Table 1 
and detailed in the following sections. By transferring 
techniques from molecule sequence alignment, we are able to 
tackle the problem caused by URL rewriting and HTML 
sanitization. 

2. Tackling URL Rewriting by Local Sequence Alignment 

There are three kinds of alignment: global, semi-global, and 
local. In global sequence alignment, an alignment is carried out 
from beginning until end of a sequence to find out the best 
possible alignment. However, this is not the case with the taint 
inference problem, since the HTML response is much longer 
than the requested URL. Semi-global sequence alignment 
attempts to find the best possible alignment among the whole 
of one short sequence and a part of one longer sequence. 
Existing taint inference techniques are suited to this type of 
alignment because they assume that a URL is in a standard 
format and that they can obtain an exact parameter used as a 
short sequence to be aligned. However, with the presence of 
URL rewriting, the boundary of such a parameter is no longer 
clear; thus, semi-global sequence alignment is no longer suited 
to the situation. In this case, we decide to adopt local sequence 
alignment to solve the problem. Sequences that are suspected 
of having similar, or even dissimilar, sequences can be 
compared by the local alignment method. The method finds 
local regions that have a high level of similarity. By using local 
sequence alignment, the precise boundary information of 
parameters is no longer necessary as it can be inferred during 
alignment.  

There is one key difference that should be noted. In existing 
taint inference techniques, [11], [13], [14], the edit distance is 
used as a measure, and an object function is then used to 
minimize the edit distance between two sequences. The edit 
distance, also referred to as the Levenshtein distance, is the 
minimum number of edit operations (that is, insertions, 
deletions, and substitutions) needed to transform one sequence 
into another. On the contrary, local alignment is defined in 
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terms of similarity, which maximizes an objective function. 
When one seeks a pair of substrings to minimize the edit 
distance, it is often the case that under most natural scoring 
schemes an optimal pair is a matching pair. However, a 
substring of a matching pair may only be a single character in 
length; thus, this is not enough to be able to identify a region of 
high similarity. A similarity formulation where matches 
contribute positively and mismatches and spaces contribute 
negatively is more likely to find more meaningful regions of 
high similarity. Thus, a similarity scheme rather than a distance 
scheme is adopted in our taint inference method to handle URL 
rewriting. 

3. Tackling HTML Sanitization by Removal Gap Penalty 

Just as a space in an alignment corresponds to an insertion or 
deletion of a single character, a gap in sequence S1 opposite 
substring S3 in sequence S2 corresponds to either a deletion of 
S3 from S1 or to an insertion of S3 into S2. The concept of a gap 
in an alignment is therefore important in many biological 
applications because the insertion or deletion of an entire 
substring often occurs as a single mutational event, such as 
unequal crossing-over in meiosis, DNA slippage during 
replication, and translocations of DNA between chromosomes. 
This is similar to the case of HTML sanitization. 

Since a gap of more than one space can be created by a 
single removal sanitization, the alignment model should reflect 
the true distribution of spaces through the use of gaps, not 
merely the number of spaces in the alignment, as adopted by 
existing taint inference methods. To accommodate this, we 
introduce a removal gap penalty — a concept derived from that 
of the gap penalty found in bioinformatics — but only count 
the number of deletion gaps considering the removal feature of 
HTML sanitization. A removal gap penalty is subtracted for 
each deletion gap that has been introduced. There are different 
gap penalties; for example, a gap open penalty and a gap 
extension penalty. A gap open penalty is always applied at the 
start of a gap, and then any other gaps following on from this 
are subject to a gap extension penalty (the lesser of the two 
penalties). In this way, continuous gaps (representing a removal 
sanitization) are preferred to separate gaps when searching for 
similar regions; this helps to detect the part of an input caused 
by removal. Thus, a removal gap penalty might mitigate the 
problem caused by HTML sanitization to some extent. 

There are different types of gap weight models; for example, 
constant, affine, convex, and arbitrary gap models. Considering 
factors such as effectiveness, efficiency, and difficulty of 
computation, the affine gap weight model is the most commonly 
used gap model in the biology domain. Therefore, we adopted 
the affine gap weight model in our algorithm as well. 

4. Algorithm 

The Smith–Waterman algorithm [15] is a well-known 
dynamic programming algorithm for performing local 
sequence alignment for determining similar regions between 
two DNA or protein sequences. In [16], an affine gap model is 
introduced to the Smith–Waterman algorithm. We adopt such 
an algorithm and modify it so as to be fit for the case of taint 
inference. In particular, we only consider a deletion gap instead 
of both an insertion gap and a deletion gap. Moreover, we use a 
substitution matrix that consists of ASCII characters to replace 
the one with nucleotide or amino acids. Here, we present the 
main idea of our taint inference algorithm using local sequence 
alignment with removal gap penalty (LSARGP). 

To align an input URL, Sin, and an output response, Sout, 
consider the prefixes Sin[1, … , i] of Sin and Sout[1, … , j] of Sout. 
The following three categories can be used to characterize all 
possible alignments of such prefixes:  
1) Character Sin(i) is aligned to a character strictly of the left of 

character Sout(j). Therefore, the alignment ends with a gap in 
Sin, which is the case of insertion. 

2) Character Sin(i) is aligned strictly to the right of Sout(j). 
Therefore, the alignment ends with a gap in Sout, which is 
the case of deletion. 

3) Character Sin(i) and Sout(j) are aligned opposite each other. 
This includes both the case that Sin(i) = Sout(j) and that Sin(i)! 
= Sout(j), representing match and mismatch, respectively. 

We define E(i, j), F(i, j), and G(i, j) as the maximum score 
value of any alignment of the above three types, respectively, 
and V(i, j) as the optimal alignment score of two prefixes. 
Assume the length of Sin is m, and the length of Sout is n. The 
dynamic programming solves the original problem by dividing 
the problem into smaller independent sub-problems with the 
following three steps: 
1) Initialization of the matrix. 

( ,0) ( ,0) 0 0 ,

(0, ) (0, ) 0 0 .

V i E i i m

V j F j j n

   
    

 

The initialization of zero for each row and column allows 
the local alignment to start from any position. 

2) Matrix filling with the appropriate scores. 
To fill each cell, we should know the neighbor values 
(diagonal, upper, and left) of the current cell. Define Wm, 
Wms, and Wg as the score weight of match, mismatch, and 
gap, respectively. The objective is to find an alignment to 

m ms gmaximize (# ) (# ) (# ) .W matches W mismatches W gaps     

In the affine gap weight model, the weight contributed by a 
single gap of length q is given by the affine function Wg = 
Wb + qWe, where Wb is the weight of the gap open penalty 
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and We is the weight of the gap extension penalty. The 
equation Wg(q + 1) – Wg(q) = We holds for any gap length q 
greater than zero. Therefore, when evaluating F(i, j), we 
need not be concerned with where a gap begins, but only 
whether it has already begun or whether a new gap is being 
started. The general recurrences are 

b

b

e

b

m in out

ms in out

( , 1)
( , ) max for 1 , 1 ,

( , 1)

( 1, )
( , ) max for 1 , 1 ,

( 1, )

( 1, 1) if ( ) ( )
( , ) max , 1 , 1 ,

( 1, 1) if ( ) ( )

0

( ,
( , ) max

E i j W
E i j i m j n

V i j W

F i j W
F i j i m j n

V i j W

V i j W S i S j
G i j i m j n

V i j W S i S j

E i
V i j

 
      

 
      

   
        


)

for 1 , 1 .
( , )

( , )

j
i m j n

F i j

G i j



    



 

The zero considered in V(i, j) allows as to say that the best 
alignment between two prefixes is the empty alignment and 
just start over. After filling the matrix, a pointer points to a 
cell that is filled previously, from where the maximum 
score has been determined. 

3) Trace back the two sequences that are being compared and 
aligned for a suitable alignment. 
The final step for the appropriate alignment is trace backing. 
Prior to that, we should find out the maximum score 
obtained in the entire matrix. The trace back begins from 
the position that has the highest value, pointing back with 
the pointers; thus, find out the possible predecessor, and 
then move to the next predecessor, and continue in this 
fashion until we reach the score zero. 

Examination of the recurrences shows that for any pair (i, j), 
each of the terms E(i, j), F(i, j), G(i, j), and V(i, j) is evaluated 
by a constant number of references to previously computed 
values, arithmetic operations, and comparisons. Hence, 
O(mn) time suffices to fill in the (m + 1)(n + 1) cells in the 
dynamic programming table. Therefore, the optimal local 
alignment with affine gap weights can be computed in O(mn) 
time. 
 

V. Experiment 

1. Research Questions 

Through our experiments, we would like to answer the 
following research questions: 
1) Is our method effective in the context of URL rewriting? 
2) Is our method effective in the context of HTML sanitization? 
3) Is our method efficient in practical deployment? 

2. Experiment Setup 

We used Apache as the web server. It has its own built-in 
URL rewriting module called “mod_rewrite.” HTML Purifier, 
a standards-compliant HTML filter library written in PHP, was 
adopted as the HTML sanitizer. HTML Purifier comes with a 
thoroughly audited, secure (yet permissive) whitelist. Besides, 
it supports user-defined lists, thus facilitating us to evaluate 
different levels of sanitization. 

The subject projects were collected from five open-source 
PHP-based web applications of different sizes ranging from 2k 
LOC to 44k LOC with 18 vulnerabilities in total. Table 2 
shows the detailed information. The vulnerability information 
is known to the public and accessible from various security 
advisories, such as Bug-Traq, CVE, and PMASA. The projects 
were obtained from SourceForge. All of them have been used 
in evaluating some vulnerability detection approaches 
previously. Each vulnerable page was tested on 108 tricky and 
obfuscated HTML-based attack vectors from “XSS cheat 
sheet” [17] — a well-known and often-cited source for    
XSS filter circumvention techniques. Thus, there are 
18 × 108 = 1,944 pairs of input and output to be inferred for 
each setting. 

As a comparison, we also evaluated the performance of    
a taint inference algorithm adopted by XSSFilt using an 
approximate substring match by edit distance (ASMED). It 
was chosen because its approximate nature accommodates the 
existence of URL rewriting and HTML sanitization to some 
extent. Moreover, its running efficiency is good enough to put  

 

Table 2. Information of subject projects. 

Subject project Description LOC Security advisories # of vulnerabilities 

FaqForge 1.3.2 Tool for document management 2238 Bugtraq-43897 4 

webChess 0.9.0 Online chess game 3236 Bugtraq-43895 8 

SchoolMate 1.5.4 Tool for school administration 8145 groups.csail.mit.edu/pag/ardilla/ 3 

Phorum 5.2.18 Message board application 12324 CVE-2011-4561 1 

PhpMyAdmin 3.4.4 Database management for MySQL 44628 PMASA-2011-16 2 
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Table 3. Evaluation metrics. 

Metric Description Calculation 

Inference rate 
Percentage of instances that are inferred 
correctly among all instances 

c
n

, where c refers to the number of correctly inferred sequences and n refers to the total 

number of instances in the dataset 

Inference precision 

Proportion of the correctly inferred parts, 
which is more fine-grained compared to the 
binary criterion that whether a sequence is 
inferred correctly or not 

2 len(Overlap)

len(Correct) len(Inferred)




, where Correct refers to the correct sequence to be inferred 

and “Inferred” refers to the sequence inferred by the taint inference algorithm, 
“Overlap” refers to the largest common part between “Correct” and “Inferred,” and 
“len” is the function computing the length of a sequence 

Mean Average value of the inference precision Sum of all inference precision values divided by the size of the dataset 

Median Middle value of the inference precision Value in the center of all inference precision values in ascending order 

p-value 
Probability of falsely rejecting the null 
hypothesis 

{| | }P U V , where U is the Mann-Whitney U test statistics and V is the sample 

statistics of U in the dataset 

Effect size 
Magnitude of the difference between two 
compared methods 2

1

2

R n

n n

 , where R is the rank sum in the Mann-Whitney U test 

  

 
into practical use, as opposed to some complex algorithms such 
as longest common sequence. In addition, it does not need 
predefined rules such as regular expressions crafted in advance. 
In ASMED, the distance of each edit operation is set to be the 
same. In our algorithm, LSARGP, the match score, the 
mismatch penalty, and the gap open penalty are set to be the 
same: furthermore, the gap extend penalty is set to be one-tenth 
of the gap open penalty. We evaluated several different values 
of gap extend penalty and found the one-tenth of the gap open 
penalty to be simple and good enough. Therefore, we only 
report results with it due to space limitations. 

To assess the performance of taint inference techniques, we 
adopted the metrics shown in Table 3. A Mann–Whitney U  
test [18] and an A-test [19], two nonparametric statistical 
approaches, were used to measure the significance of any 
differences between ASMED and LSARGP. In the case of the 
Mann–Whitney U test, the null hypothesis (H0) is that data 
from the two algorithms share the same distribution; the 
alternate hypothesis (H1) is that they have different distributions. 
Any difference between the two distributions is statistically 
significant when the null hypothesis is rejected at a significance 
level of 5%. To further assess the difference quantitatively, we 
use the nonparametric Vargha–Delaney A-test, which is 
recommended in [20], to evaluate the magnitude of any 
difference by measuring the effect size of inference precision. 
In the case of the A-test, the bigger the deviation of the effect 
size from a value of 0.5, the greater the magnitude of any 
difference between the two groups studied. 

We ran all the experiments on a desktop computer with an 
Intel Core i7 3.5 GHz processor and 4 GB RAM using 
Ubuntu 14.04 LTS. The algorithms were implemented in 
Python 2.7. 

Table 4. Examples of different URL formats. 

URL Example 

URL0 
http://www.example.com/product/viewcatalog.asp?category= 

shoes&prodID=15 

URL1 
http://www.example.com/product/viewcatalog.asp?category= 

shoes_prodID=15 

URL2 
http://www.example.com/product/viewcatalog/category 

/shoes/prodID/15 

URL3 http://www.example.com/product/viewcatalog/shoes/15 

  

 
3. Experimental Results 

A. URL Rewriting 

First, we evaluated the performance of our taint inference in 
the context of URL rewriting. Details of the different URL 
formats evaluated are shown in Table 4. The part to be inferred 
is in bold. The rewritten part is enlarged from URL0 to URL3. 
URL0 is the standard URL without rewriting, and the 
parameters can be extracted precisely. URL1 changes the 
parameter separator from “&” to “_”; thus, the whole of the 
part after “?” should be inferred as a whole. URL2 removes the  
suffix of the dynamic page and replaces the “?” and “&” with 
“/.” URL3 further omits the parameter names based on URL2. 
For URL2 and URL3, all the parts after the domain should be 
inferred. 

The results of inference rate are shown in Fig. 3(a). Both 
algorithms perform well without URL rewriting. However, 
ASMED cannot infer the exact content so long as a semblance 
of URL rewriting exists, whereas LSARGP can handle around  
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Fig. 3. Results of different URLs: (a) histogram for inference rate
and (b) boxplot for inference precision. 
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Table 5. Taint precision statistics of different URLs. 

URL 
Inference 
algorithm 

Mean Median p-value Effect size

ASMED 1.00 1.00 
URL0 

LSARGP 1.00 1.00 
0.499994 0.50 

ASMED 0.59 0.62 
URL1 

LSARGP 0.97 1.00 
0.000000 0.98 

ASMED 0.57 0.61 
URL2 

LSARGP 0.97 1.00 
0.000000 0.98 

ASMED 0.72 0.76 
URL3 

LSARGP 0.99 1.00 
0.000000 0.99 

  

 
80% of the cases for each format. Figure 3(b) shows the  
results of inference precision, and Table 5 gives the statistical 
comparisons. As we can see from the boxplot, the precision of 
LSARGP is much better than ASMED in URL1, URL2, and 
URL3. The p-values of them are zero, demonstrating the results 
are of statistical significance. The effect sizes are close to one, 
which shows the distinct advantage of LSARGP over ASMED.  

 

Fig. 4. Results of different sanitizers: (a) histogram for inference 
rate and (b) boxplot for inference precision. 
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From the results, we can answer research question 1) in as far as 
saying that our method handles the URL rewriting effectively. 

B. HTML Sanitization 

To evaluate the impact of HTML sanitization, we used 
sanitization rules of different strict levels. From SAN0 to 
SAN4, the level of strictness increases, which means more 
parts of the content might be removed. SAN0 is the case 
without any sanitization. SAN1 filters “script” tags and 
attributes that can trigger scripts, such as “onclick.” SAN2 
further removes attributes like “src” or “href,” which might 
include remote scripts. SAN3 uses a more sophisticated 
whitelist from HTML Purifier, which sanitizes more potentially 
dangerous tags and attributes. SAN4 removes all HTML tags, 
which is rarely in reality for the sake of usability and just 
included as an extreme case. 

The results of different sanitizations are shown in Fig. 4 and 
Table 6. Both algorithms perform well without any sanitization. 
Their respective performances decrease along with the increase 
in the level of strictness. In extreme cases (for example, where  
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Table 6. Taint precision statistics of different sanitizers. 

Sanitizer 
Inference 
algorithm 

Mean Median p-value Effect size

ASMED 1.00 1.00 
SAN0 

LSARGP 1.00 1.00 
0.499994 0.50 

ASMED 0.97 1.00 
SAN1 

LSARGP 1.00 1.00 
0.000000 0.56 

ASMED 0.95 1.00 
SAN2 

LSARGP 1.00 1.00 
0.000000 0.65 

ASMED 0.78 0.84 
SAN3 

LSARGP 0.95 1.00 
0.000000 0.78 

ASMED 0.32 0.00 
SAN4 

LSARGP 0.31 0.00 
0.193539 0.49 

  

 
all HTML tags are disallowed), both algorithms perform poorly, 
because of large parts of removal; thus, there is a lack of 
adequate information for inference. 

Nevertheless, from Fig. 4(a), we can see that in common 
cases such as those of SAN1, SAN2, and SAN3, LSARGP can 
infer correctly in more than 75% of cases, which is better than 
that of ASMED; this advantage increases along with an 
increase in the level of strictness. The advantage of taint 
precision is also conspicuous, which is shown in Fig. 4(b) and 
Table 5. The p-values are zero and the effect sizes are above 0.5 
in SAN1, SAN2, and SAN3. Moreover, the effect size 
increases as with the level of strictness. The advantage of 
LSARGP is most conspicuous in SAN3, which is the case of 
the most practical setting. From the results, we can conclude 
that LSARGP performs well in practical cases, which answers 
research question 2) in as far as to say that our method is 
effective in dealing with HTML sanitization. 

C. Running Time 

To evaluate the running overhead of our taint inference 
method, we recorded the running time of the algorithm in all 
runs of previous experiments and report them in Fig. 5. The 
mean time is just around 6 ms and the maximum time cost is 
only 35 ms, which is negligible compared to the response time 
of a web page. Thus, we can answer research question 3) in as 
far as we can say that our method is efficient enough to be put 
into practical use. 

VI. Related Work 

XSS vulnerabilities have received a great deal of attention in 
research, and a variety of approaches have been proposed to 
tackle them. Different from general program bugs, XSS cannot 
be discovered by common debugging techniques [21], [22].  

 

Fig. 5. Boxplot of running time. 
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Detecting XSS and defending against it at runtime is a more 
practical way. Earlier works have been mostly in the form of 
server-side defenses. XSSDS [10] is based on passive HTTP 
traffic monitoring. Reflected XSS attacks can be detected 
through string matching, and stored XSS attacks can be 
detected by establishing a set whitelist of scripts. Reference [7] 
uses string matching and taint-aware policies to stop generic 
injection attacks. It uses precise taint tracking, and the policies 
are based on syntactic confinement. XSS-GUARD [23] works 
by dynamically learning the set of scripts that a web application 
intends to create for any HTML request. Blueprint [24] 
converts the untrusted HTML embedded in a page into 
JavaScript code to fix the browser's interpretation of the page at 
the server side. Reference [25] proposes an efficient black-box 
taint inference technique. Taint is inferred by an approximate 
substring match. It also proposes a flexible syntax- and taint-
aware policy framework. Client-side approaches protect users 
against XSS vulnerabilities without waiting for websites to fix 
them. IE [8] comes with built-in XSS protection. It first marks 
requests that look suspicious. Responses to such requests are 
then scanned for script content that may be derived from 
suspicious parameters, and this content is then sanitized to 
prevent its interpretation as a script. XSSAuditor [9] proposes 
that a new architecture mediate between the HTML parser and 
the JavaScript engine, which achieves both high performance 
and high precision. NoScript [26] includes an XSS filter, in 
which regular expressions are used to extract and identify 
malicious data from a URL. Reference [27] presents a 
modification to Firefox's JavaScript engine that prevents data 
leaks using fine-grained dynamic taint tracking on the client 
side, refusing to transfer sensitive information to third parties. 
XSSFilt [11] can detect partial script injections, and uses 
approximate rather than exact string matching to detect 
reflected content. Hybrid approaches are an alternative, in 
which the server is responsible for identifying untrusted data 
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that it reports to the browser, and a modified browser ensures 
that XSS attacks cannot result from parsing the untrusted data. 
BEEP [28] allows the server to supply a policy for the page 
through a JavaScript function. Nonespaces [29] is an end-to-
end mechanism that allows a server to identify untrusted 
content and reliably convey this information to the client, as 
well as allowing the client to enforce a security policy on the 
untrusted content. DSI [30] enforces the structure integrity of 
web documents through parser-level isolation of untrusted data 
in the browser based on a server-specified policy. Content 
Security Policy [31] is a technique to support server-supplied 
content restrictions by specifying a list of trusted hosts allowed 
to provide content for the web page. 

VII. Conclusion 

In this paper, we proposed and evaluated a new taint 
inference technique to infer taints for XSS within the context of 
URL rewriting and HTML sanitization. By making an analogy 
between the taint inference problem and the molecule sequence 
alignment problem in bioinformatics, these two domains are 
shown to be connected; the results of our empirical evaluation 
confirm such a connection. As a result, we believe that 
researchers in the field of taint inference should look to be 
inspired by and learn more from the ever-developing 
techniques in bioinformatics. For example, a more 
sophisticated substitution matrix can be introduced to reflect 
the distribution of different characters and the probability of 
transformation performed by the server application, which will 
be our future work. 
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