
376 Jinkun Pan et al. © 2016 ETRI Journal, Volume 38, Number 2, April 2016
http://dx.doi.org/10.4218/etrij.16.0115.0570

Currently, web applications are gaining in prevalence.
In a web application, an input may not be appropriately
validated, making the web application susceptible to cross-
site scripting (XSS), which poses serious security problems
for Internet users and websites to whom such trusted web
pages belong. A taint inference is a type of information
flow analysis technique that is useful in detecting XSS
on the client side. However, in existing techniques, two
current practical issues have yet to be handled properly.
One is URL rewriting, which transforms a standard URL
into a clearer and more manageable form. Another is
HTML sanitization, which filters an input against
blacklists or whitelists of HTML tags or attributes. In this
paper, we make an analogy between the taint inference
problem and the molecule sequence alignment problem in
bioinformatics, and transfer two techniques related to the
latter over to the former to solve the aforementioned yet-
to-be-handled-properly practical issues. In particular, in
our method, URL rewriting is addressed using local
sequence alignment and HTML sanitization is modeled by
introducing a removal gap penalty. Empirical results
demonstrate the effectiveness and efficiency of our method.

Keywords: Taint inference, cross-site scripting, URL
rewriting, HTML sanitization, bioinformatics.

Manuscript received June 24, 2015; revised Oct. 17, 2015; accepted Dec. 9, 2015.
This work was supported by the National Natural Science Foundation of China (Nos.

61379054, 61502015, and 91318301), and Program for New Century Excellent Talents in
University.

Jinkun Pan (corresponding author, pan_jin_kun@163.com), Xiaoguang Mao
(xgmao@nudt.edu.cn), and Weishi Li (bitasa.student@sina.com) are with the College of
Computer, National University of Defense Technology, Changsha, China.

I. Introduction

Nowadays, accessing web applications has already become a
daily routine for many people, such as the checking of emails,
conducting bank transactions, and visiting social networking
websites. All kinds of information systems for governments,
businesses, and individuals are now built as web applications.
Unfortunately, many web applications are exposed to various
security vulnerabilities. Among them, cross-site scripting
(XSS) has emerged as one of the most serious threats on the
web. XSS is listed second in the top 10 security risks from
OWASP [1], and fourth in the top 25 most dangerous software
errors from CWE/SANS [2]. The security problems caused by
XSS are of great severity. Through injecting malicious scripts
into trusted web contents, an attacker can gain access to a
user’s browser; steal a user’s cookies; hijack a user’s sessions;
transfer confidential data; cause denial of service; and forge
web requests and responses, as well as perform many other
types of malicious activities.

Although a single XSS vulnerability is easy to fix, fixing all
XSS vulnerabilities in a large web application is a really
challenging task, which many application programmers cannot
fully accomplish. Instead of fixing them all, detecting and
preventing them when they occur is a more feasible way to
deal with them. To prevent XSS, we should first detect whether
an attacker is able to exert control over a piece of web content,
and if so, we should then further detect precisely which parts of
this content can the attacker inject into. Taint inference is
proposed to solve this problem. Such a technique is practically
useful on the client side because it works in a manner similar to
that of a black box (that is, it compares the input of the user
with the response of the server); thus, it does not need source
code and is irrelevant to the underlying server technology.

Taint Inference for Cross-Site Scripting in
Context of URL Rewriting and HTML Sanitization

 Jinkun Pan, Xiaoguang Mao, and Weishi Li

ETRI Journal, Volume 38, Number 2, April 2016 Jinkun Pan et al. 377
http://dx.doi.org/10.4218/etrij.16.0115.0570

However, some practical issues still remain to be solved. For
example, more and more websites are using URL rewriting to
overcome the shortcomings of the standard URL — the
exposing of the underlying technology of the website, the fact
that it is neither descriptive nor friendly to users and search
engines alike. URL rewriting impedes existing taint inference
techniques in locating and extracting a user input from a
URL, thus affecting the precision of any resulting inference.
Moreover, many server applications adopt HTML sanitizers to
filter potential dangerous tags and attributes in an effort to
protect against XSS attacks. This also causes problems when it
comes to trying to match the input of a user with the response
of the server. To overcome these two problems, we propose a
new taint inference technique inspired by molecule sequence
alignment in bioinformatics. Through local sequence alignment,
a tainted input can be located and inferred automatically within
the context of URL rewriting, and the imprecision of taint
inference caused by HTML sanitization can be mitigated by
introducing a removal gap penalty. We evaluate our technique
using 18 vulnerabilities in five open-source projects, each with
108 malicious vectors. Experimental results show that both the
inference rate and the inference precision are improved
evidently and that the running overhead is negligible.

In the reminder of this paper, we first introduce background
techniques in Section II. Then, we describe the motivation for
our study in Section III and propose our approach in Section IV.
Experimental evaluations are reported in Section V. Finally,
we discuss the related work in Section VI and conclude in
Section VII.

II. Background

1. Cross-Site Scripting

XSS denotes a kind of code injection attack on a web
application. Because HTML documents have a flat, serial
structure comprising a mixture of control statements,
formatting, and actual content, attackers can inject malicious
scripts into the content to be responded to by the vulnerable
application, due to a lack of proper input validation and
sanitization. As such injected content is delivered from a trusted
server, the relevant malicious scripts can act under permissions
that are granted to the vulnerable application.

XSS can be classified into three different types: reflected,
stored, and DOM-based XSS. A reflected XSS vulnerability is
the most common type. These vulnerabilities show up when
data provided by a web client is used immediately by server-
side scripts to parse and display a page of results. A stored XSS
vulnerability occurs when malicious data provided by an
attacker is injected into a vulnerable application’s storage. This

results in every user that accesses the poisoned web page
receiving the injected script without the need for any further
action on behalf of the attacker. A DOM-based XSS is a special
variant of the reflected XSS, where logic errors in legitimate
JavaScript and careless usage of client-side data result in XSS
conditions. In a DOM-based XSS, malicious data need not
touch a web server; rather, it can be reflected by the JavaScript
code, fully on the client side.

Regardless of the different types of XSS, the corresponding
taint inference algorithms are similar. The differences lie in the
contexts and contents to be inferred. To simplify illustration, we
only consider reflected XSS in this paper.

2. Taint Inference

XSS attacks occur under the following two conditions:
▪ Data from an untrusted source is injected into dynamic

content that is to be sent to a web user.
▪ The injected content is able to perform malicious activities

— the likes of which is not anticipated by either the
developer or the administrator.

To detect the occurrence of an XSS attack, it is necessary to
check whether these two conditions have been met. In our
research, we focus on the first condition and try to solve the
problems of whether data from an untrusted source has been
injected and which parts of the response delivered by the server
are derived from the injected data.

Fine-grained taint tracking [3]–[7] has been proposed as an
effective technique for tackling such problems. However, it
suffers from several drawbacks, such as heavy instruments,
high overheads, language dependency, and requirement of
source codes; thus, these drawbacks make it difficult to adopt
such a technique in production systems.

To overcome these drawbacks, a new taint inference
technique is proposed, which infers taints using a black-box
method by observing and comparing user input requests and
server output responses. Generally speaking, requests to web
applications use the HTTP protocol, with standardized ways of
encoding parameters. Web applications receive the request-
related parameter values, apply simple sanitization or
normalization operations, and then use the values to retrieve
some data, or even generate contents containing these values
and respond to the user. As a result, data flows might be
identified by comparing input parameter values against all
possible substrings of outgoing responses. Because client-side
defenses do not (and need not) access the source code, taint
inference is preferred rather than taint tracking. An example is
shown in Fig. 1. The server code is vulnerable due to a lack of
proper input processing. The solid arrows represent a taint flow
from the URL request to the HTML response through the

378 Jinkun Pan et al. ETRI Journal, Volume 38, Number 2, April 2016
http://dx.doi.org/10.4218/etrij.16.0115.0570

Fig. 1. Example of taint inference in detecting XSS vulnerability.

http://www.example.com/prod
uct/viewcatalog.asp?category
=<script>doEvil()</script>
&prodID=15 <html><body>

The following products are in category
<?=$_GET[‘category’]> :
……
</body></html> <html><body>

The following products are in category
<script>doEvil()</script> :
……
</body></html>

URL request

Server code

HTML response

server code. However, the server code is not available on the
client side. Taint inference helps us infer the taint flow between
the URL request and the HTML response, shown by the
dashed arrow, which discloses the XSS vulnerability concealed
in the server code.

In existing techniques, Internet Explorer (IE) [8] uses regular
expressions to infer taints. From inputs, regular expressions
from possibly malicious injections are created using heuristics.
These expressions are then compiled and matched against the
HTML output. The taint inference algorithm of XSSAuditor
[9] uses the idea of straight string matching between inputs
and outputs, considering magic quotes and normalization of
unicode characters. NoXSS [10] adopts a longest common
subsequence algorithm, which allows parts of a substring to be
present in an input parameter while missing in a response.
XSSFilt [11] relies on an approximate, rather than exact, string
match to be able to identify taint in the presence of simple
sanitization or normalization operations used by a web
application. These techniques have been proven to be useful in
inferring taints that may cause XSS. Nevertheless, there are still
some practical issues that need to be further investigated, which
will be discussed in the next section.

III. Motivation

1. URL Rewriting

URL rewriting aims to improve the appearance of a given
URL. It adds a layer of abstraction between the files used to
generate a web page and the URL that is presented to the
outside world. Most web servers and web frameworks support
URL rewriting, either directly or through extension modules.

Normally, a standard URL looks something like the
following:
http://www.example.com/product/viewcatalog.asp?category=s
hoes&prodID=15
They are prevalent in dynamically generated web pages.
However, there are many problems with a URL of this kind:

▪ It exposes the underlying technology, which gives potential
hackers clues as to what they should send along with the
query string to perform a front-door attack on the site.

▪ If the language that the website is based on is changed (to
PHP, for instance), all old URLs will stop working.

▪ The URL is littered with awkward punctuation, such as the
question mark and ampersand.

▪ Many search engines will not index a site in depth if it
contains links to such dynamic pages.

Luckily, using rewriting, we can clean up this URL to
something far more manageable, such as the following:
http://www.example.com/product/catalog/shoes/15
This URL is more logical, readable, and memorable and will
be picked up by search engines. The faux directories are short
and descriptive. In addition, it looks more permanent.

Nevertheless, there can be drawbacks as well. A URL is the
most prevalent input source of XSS. Existing taint inference
techniques rely on standard parameter encoding of URLs to
locate and extract user inputs. In such encodings, parameters
are located after a question mark and separated by an
ampersand (in a URL). Each parameter has a name and a value
that are connected with the equals sign. It is easy to parse a
standard URL to extract parameter values as the user input to
be inferred. However, in the context of URL rewriting, it is
hard to extract parameters on the client side, since we do not
know the rewriting rules of the server; the only thing we can
determine is that parameters may exist in the URL beyond
the domain part. Without precise information of the input
parameters, the effectiveness of existing taint inference
techniques will reduce dramatically. This motivates us to
propose a practical method to infer taints without relying on
exact URL parameter locations.

2. HTML Sanitation

HTML sanitization is the process of examining an HTML
document and producing a new HTML document that
preserves only those tags that are deemed to be safe. HTML
sanitization can be used to protect against XSS attacks by
sanitizing any HTML code submitted by a user. Basic tags for
changing fonts are often allowed, such as , <i>, <u>, ,
and , while more advanced tags such as <script>,
<object>, <embed>, and <link> or some attributes of these tags
might be removed by the sanitization process. Sanitization is
typically performed by using either a whitelist or a blacklist
approach. There are a variety of sanitizers for different
languages and frameworks, but the principles are the same.

Unfortunately, existing taint inference techniques do not deal
with such removal sanitization properly. Specifically, none of
them considers the continuous removal region caused by HTML

ETRI Journal, Volume 38, Number 2, April 2016 Jinkun Pan et al. 379
http://dx.doi.org/10.4218/etrij.16.0115.0570

Fig. 2. Example of different transformation cases. Original
sequence is S0. After two different transformations, T1

and T2, S0 becomes S1 and S2. Alignments of S1 and S2

against S0 are denoted by A1 and A2, respectively, in
which “_” is introduced as space caused by removal.

<div id=“abc” onclick=“xyz”>contents</div>

S0

<div id=“abc” onclick=“”>contents</div>

S1

<div id=“abc” onclick=“xyz”>cntns</div>

S2

T1 T2

<div id=“abc” onclick=“_ _ _”>contents</div>

A1

<div id=“abc” onclick=“xyz”>c_nt_n_s</div>

A2

sanitizers. Consider the example shown in Fig. 2. The distance
between S0 and S1 is the same as that between S0 and S2,
because the number of “_” introduced are equal. Nevertheless,
the transformation from S0 to S1 can be done in only one
operation, while at least three operations have to happen to
transform S0 into S2. It is obvious that the former is more
plausible and close to the removal operation of HTML
sanitizers. However, existing taint inference techniques either
reject both S1 and S2 due to mismatch, or treat S1 and S2 as
the same. They do not distinguish continuous removal and
separated removal; thus, they are unable to reflect the real
distribution of the removed region caused by HTML
sanitization. This motivates us to take such a characteristic of
HTML sanitization into consideration during taint inference to
improve the precision.

IV. Approach

1. Analogy between Taint Inference and Molecule Sequence
Alignment

 Our approach is mainly inspired by the molecule sequence
alignment technique in bioinformatics [12]. Sequence
alignment is a way of arranging the sequences of DNA, RNA,
or protein to identify regions of similarity that may be
a consequence of functional, structural, or evolutionary
relationships between the sequences. Aligned sequences of
nucleotide or amino acid residues are typically represented as
rows within a matrix. Spaces are inserted between the residues
so that identical or similar characters are aligned in successive
columns. If two sequences in an alignment share a common
ancestor, then mismatches can be interpreted as point mutations
and spaces as indels (that is, insertion or deletion mutations)
introduced in one or both lineages in the time since they
diverged from one another. Sequence alignment has also been
used for non-biological sequences, such as those present in
natural language or in financial data. By comparing the

Table 1. Analogy between sequence alignment and taint inference.

Sequence alignment Taint inference

Molecule sequence ASCII character sequence

Semi-global alignment Standard URL

Local alignment URL rewriting

Deletion mutation HTML sanitization

Gap penalty Removal gap penalty

similarity between sequence alignment and taint inference, we
observe an analogy between them, which is shown in Table 1
and detailed in the following sections. By transferring
techniques from molecule sequence alignment, we are able to
tackle the problem caused by URL rewriting and HTML
sanitization.

2. Tackling URL Rewriting by Local Sequence Alignment

There are three kinds of alignment: global, semi-global, and
local. In global sequence alignment, an alignment is carried out
from beginning until end of a sequence to find out the best
possible alignment. However, this is not the case with the taint
inference problem, since the HTML response is much longer
than the requested URL. Semi-global sequence alignment
attempts to find the best possible alignment among the whole
of one short sequence and a part of one longer sequence.
Existing taint inference techniques are suited to this type of
alignment because they assume that a URL is in a standard
format and that they can obtain an exact parameter used as a
short sequence to be aligned. However, with the presence of
URL rewriting, the boundary of such a parameter is no longer
clear; thus, semi-global sequence alignment is no longer suited
to the situation. In this case, we decide to adopt local sequence
alignment to solve the problem. Sequences that are suspected
of having similar, or even dissimilar, sequences can be
compared by the local alignment method. The method finds
local regions that have a high level of similarity. By using local
sequence alignment, the precise boundary information of
parameters is no longer necessary as it can be inferred during
alignment.

There is one key difference that should be noted. In existing
taint inference techniques, [11], [13], [14], the edit distance is
used as a measure, and an object function is then used to
minimize the edit distance between two sequences. The edit
distance, also referred to as the Levenshtein distance, is the
minimum number of edit operations (that is, insertions,
deletions, and substitutions) needed to transform one sequence
into another. On the contrary, local alignment is defined in

380 Jinkun Pan et al. ETRI Journal, Volume 38, Number 2, April 2016
http://dx.doi.org/10.4218/etrij.16.0115.0570

terms of similarity, which maximizes an objective function.
When one seeks a pair of substrings to minimize the edit
distance, it is often the case that under most natural scoring
schemes an optimal pair is a matching pair. However, a
substring of a matching pair may only be a single character in
length; thus, this is not enough to be able to identify a region of
high similarity. A similarity formulation where matches
contribute positively and mismatches and spaces contribute
negatively is more likely to find more meaningful regions of
high similarity. Thus, a similarity scheme rather than a distance
scheme is adopted in our taint inference method to handle URL
rewriting.

3. Tackling HTML Sanitization by Removal Gap Penalty

Just as a space in an alignment corresponds to an insertion or
deletion of a single character, a gap in sequence S1 opposite
substring S3 in sequence S2 corresponds to either a deletion of
S3 from S1 or to an insertion of S3 into S2. The concept of a gap
in an alignment is therefore important in many biological
applications because the insertion or deletion of an entire
substring often occurs as a single mutational event, such as
unequal crossing-over in meiosis, DNA slippage during
replication, and translocations of DNA between chromosomes.
This is similar to the case of HTML sanitization.

Since a gap of more than one space can be created by a
single removal sanitization, the alignment model should reflect
the true distribution of spaces through the use of gaps, not
merely the number of spaces in the alignment, as adopted by
existing taint inference methods. To accommodate this, we
introduce a removal gap penalty — a concept derived from that
of the gap penalty found in bioinformatics — but only count
the number of deletion gaps considering the removal feature of
HTML sanitization. A removal gap penalty is subtracted for
each deletion gap that has been introduced. There are different
gap penalties; for example, a gap open penalty and a gap
extension penalty. A gap open penalty is always applied at the
start of a gap, and then any other gaps following on from this
are subject to a gap extension penalty (the lesser of the two
penalties). In this way, continuous gaps (representing a removal
sanitization) are preferred to separate gaps when searching for
similar regions; this helps to detect the part of an input caused
by removal. Thus, a removal gap penalty might mitigate the
problem caused by HTML sanitization to some extent.

There are different types of gap weight models; for example,
constant, affine, convex, and arbitrary gap models. Considering
factors such as effectiveness, efficiency, and difficulty of
computation, the affine gap weight model is the most commonly
used gap model in the biology domain. Therefore, we adopted
the affine gap weight model in our algorithm as well.

4. Algorithm

The Smith–Waterman algorithm [15] is a well-known
dynamic programming algorithm for performing local
sequence alignment for determining similar regions between
two DNA or protein sequences. In [16], an affine gap model is
introduced to the Smith–Waterman algorithm. We adopt such
an algorithm and modify it so as to be fit for the case of taint
inference. In particular, we only consider a deletion gap instead
of both an insertion gap and a deletion gap. Moreover, we use a
substitution matrix that consists of ASCII characters to replace
the one with nucleotide or amino acids. Here, we present the
main idea of our taint inference algorithm using local sequence
alignment with removal gap penalty (LSARGP).

To align an input URL, Sin, and an output response, Sout,
consider the prefixes Sin[1, … , i] of Sin and Sout[1, … , j] of Sout.
The following three categories can be used to characterize all
possible alignments of such prefixes:
1) Character Sin(i) is aligned to a character strictly of the left of

character Sout(j). Therefore, the alignment ends with a gap in
Sin, which is the case of insertion.

2) Character Sin(i) is aligned strictly to the right of Sout(j).
Therefore, the alignment ends with a gap in Sout, which is
the case of deletion.

3) Character Sin(i) and Sout(j) are aligned opposite each other.
This includes both the case that Sin(i) = Sout(j) and that Sin(i)!
= Sout(j), representing match and mismatch, respectively.

We define E(i, j), F(i, j), and G(i, j) as the maximum score
value of any alignment of the above three types, respectively,
and V(i, j) as the optimal alignment score of two prefixes.
Assume the length of Sin is m, and the length of Sout is n. The
dynamic programming solves the original problem by dividing
the problem into smaller independent sub-problems with the
following three steps:
1) Initialization of the matrix.

(,0) (,0) 0 0 ,

(0,) (0,) 0 0 .

V i E i i m

V j F j j n

   
    

The initialization of zero for each row and column allows
the local alignment to start from any position.

2) Matrix filling with the appropriate scores.
To fill each cell, we should know the neighbor values
(diagonal, upper, and left) of the current cell. Define Wm,
Wms, and Wg as the score weight of match, mismatch, and
gap, respectively. The objective is to find an alignment to

m ms gmaximize (#) (#) (#) .W matches W mismatches W gaps   

In the affine gap weight model, the weight contributed by a
single gap of length q is given by the affine function Wg =
Wb + qWe, where Wb is the weight of the gap open penalty

ETRI Journal, Volume 38, Number 2, April 2016 Jinkun Pan et al. 381
http://dx.doi.org/10.4218/etrij.16.0115.0570

and We is the weight of the gap extension penalty. The
equation Wg(q + 1) – Wg(q) = We holds for any gap length q
greater than zero. Therefore, when evaluating F(i, j), we
need not be concerned with where a gap begins, but only
whether it has already begun or whether a new gap is being
started. The general recurrences are

b

b

e

b

m in out

ms in out

(, 1)
(,) max for 1 , 1 ,

(, 1)

(1,)
(,) max for 1 , 1 ,

(1,)

(1, 1) if () ()
(,) max , 1 , 1 ,

(1, 1) if () ()

0

(,
(,) max

E i j W
E i j i m j n

V i j W

F i j W
F i j i m j n

V i j W

V i j W S i S j
G i j i m j n

V i j W S i S j

E i
V i j

 
      

 
      

   
        


)

for 1 , 1 .
(,)

(,)

j
i m j n

F i j

G i j



    



The zero considered in V(i, j) allows as to say that the best
alignment between two prefixes is the empty alignment and
just start over. After filling the matrix, a pointer points to a
cell that is filled previously, from where the maximum
score has been determined.

3) Trace back the two sequences that are being compared and
aligned for a suitable alignment.
The final step for the appropriate alignment is trace backing.
Prior to that, we should find out the maximum score
obtained in the entire matrix. The trace back begins from
the position that has the highest value, pointing back with
the pointers; thus, find out the possible predecessor, and
then move to the next predecessor, and continue in this
fashion until we reach the score zero.

Examination of the recurrences shows that for any pair (i, j),
each of the terms E(i, j), F(i, j), G(i, j), and V(i, j) is evaluated
by a constant number of references to previously computed
values, arithmetic operations, and comparisons. Hence,
O(mn) time suffices to fill in the (m + 1)(n + 1) cells in the
dynamic programming table. Therefore, the optimal local
alignment with affine gap weights can be computed in O(mn)
time.

V. Experiment

1. Research Questions

Through our experiments, we would like to answer the
following research questions:
1) Is our method effective in the context of URL rewriting?
2) Is our method effective in the context of HTML sanitization?
3) Is our method efficient in practical deployment?

2. Experiment Setup

We used Apache as the web server. It has its own built-in
URL rewriting module called “mod_rewrite.” HTML Purifier,
a standards-compliant HTML filter library written in PHP, was
adopted as the HTML sanitizer. HTML Purifier comes with a
thoroughly audited, secure (yet permissive) whitelist. Besides,
it supports user-defined lists, thus facilitating us to evaluate
different levels of sanitization.

The subject projects were collected from five open-source
PHP-based web applications of different sizes ranging from 2k
LOC to 44k LOC with 18 vulnerabilities in total. Table 2
shows the detailed information. The vulnerability information
is known to the public and accessible from various security
advisories, such as Bug-Traq, CVE, and PMASA. The projects
were obtained from SourceForge. All of them have been used
in evaluating some vulnerability detection approaches
previously. Each vulnerable page was tested on 108 tricky and
obfuscated HTML-based attack vectors from “XSS cheat
sheet” [17] — a well-known and often-cited source for
XSS filter circumvention techniques. Thus, there are
18 × 108 = 1,944 pairs of input and output to be inferred for
each setting.

As a comparison, we also evaluated the performance of
a taint inference algorithm adopted by XSSFilt using an
approximate substring match by edit distance (ASMED). It
was chosen because its approximate nature accommodates the
existence of URL rewriting and HTML sanitization to some
extent. Moreover, its running efficiency is good enough to put

Table 2. Information of subject projects.

Subject project Description LOC Security advisories # of vulnerabilities

FaqForge 1.3.2 Tool for document management 2238 Bugtraq-43897 4

webChess 0.9.0 Online chess game 3236 Bugtraq-43895 8

SchoolMate 1.5.4 Tool for school administration 8145 groups.csail.mit.edu/pag/ardilla/ 3

Phorum 5.2.18 Message board application 12324 CVE-2011-4561 1

PhpMyAdmin 3.4.4 Database management for MySQL 44628 PMASA-2011-16 2

382 Jinkun Pan et al. ETRI Journal, Volume 38, Number 2, April 2016
http://dx.doi.org/10.4218/etrij.16.0115.0570

Table 3. Evaluation metrics.

Metric Description Calculation

Inference rate
Percentage of instances that are inferred
correctly among all instances

c
n

, where c refers to the number of correctly inferred sequences and n refers to the total

number of instances in the dataset

Inference precision

Proportion of the correctly inferred parts,
which is more fine-grained compared to the
binary criterion that whether a sequence is
inferred correctly or not

2 len(Overlap)

len(Correct) len(Inferred)




, where Correct refers to the correct sequence to be inferred

and “Inferred” refers to the sequence inferred by the taint inference algorithm,
“Overlap” refers to the largest common part between “Correct” and “Inferred,” and
“len” is the function computing the length of a sequence

Mean Average value of the inference precision Sum of all inference precision values divided by the size of the dataset

Median Middle value of the inference precision Value in the center of all inference precision values in ascending order

p-value
Probability of falsely rejecting the null
hypothesis

{| | }P U V , where U is the Mann-Whitney U test statistics and V is the sample

statistics of U in the dataset

Effect size
Magnitude of the difference between two
compared methods 2

1

2

R n

n n

 , where R is the rank sum in the Mann-Whitney U test

into practical use, as opposed to some complex algorithms such
as longest common sequence. In addition, it does not need
predefined rules such as regular expressions crafted in advance.
In ASMED, the distance of each edit operation is set to be the
same. In our algorithm, LSARGP, the match score, the
mismatch penalty, and the gap open penalty are set to be the
same: furthermore, the gap extend penalty is set to be one-tenth
of the gap open penalty. We evaluated several different values
of gap extend penalty and found the one-tenth of the gap open
penalty to be simple and good enough. Therefore, we only
report results with it due to space limitations.

To assess the performance of taint inference techniques, we
adopted the metrics shown in Table 3. A Mann–Whitney U
test [18] and an A-test [19], two nonparametric statistical
approaches, were used to measure the significance of any
differences between ASMED and LSARGP. In the case of the
Mann–Whitney U test, the null hypothesis (H0) is that data
from the two algorithms share the same distribution; the
alternate hypothesis (H1) is that they have different distributions.
Any difference between the two distributions is statistically
significant when the null hypothesis is rejected at a significance
level of 5%. To further assess the difference quantitatively, we
use the nonparametric Vargha–Delaney A-test, which is
recommended in [20], to evaluate the magnitude of any
difference by measuring the effect size of inference precision.
In the case of the A-test, the bigger the deviation of the effect
size from a value of 0.5, the greater the magnitude of any
difference between the two groups studied.

We ran all the experiments on a desktop computer with an
Intel Core i7 3.5 GHz processor and 4 GB RAM using
Ubuntu 14.04 LTS. The algorithms were implemented in
Python 2.7.

Table 4. Examples of different URL formats.

URL Example

URL0
http://www.example.com/product/viewcatalog.asp?category=

shoes&prodID=15

URL1
http://www.example.com/product/viewcatalog.asp?category=

shoes_prodID=15

URL2
http://www.example.com/product/viewcatalog/category

/shoes/prodID/15

URL3 http://www.example.com/product/viewcatalog/shoes/15

3. Experimental Results

A. URL Rewriting

First, we evaluated the performance of our taint inference in
the context of URL rewriting. Details of the different URL
formats evaluated are shown in Table 4. The part to be inferred
is in bold. The rewritten part is enlarged from URL0 to URL3.
URL0 is the standard URL without rewriting, and the
parameters can be extracted precisely. URL1 changes the
parameter separator from “&” to “_”; thus, the whole of the
part after “?” should be inferred as a whole. URL2 removes the
suffix of the dynamic page and replaces the “?” and “&” with
“/.” URL3 further omits the parameter names based on URL2.
For URL2 and URL3, all the parts after the domain should be
inferred.

The results of inference rate are shown in Fig. 3(a). Both
algorithms perform well without URL rewriting. However,
ASMED cannot infer the exact content so long as a semblance
of URL rewriting exists, whereas LSARGP can handle around

ETRI Journal, Volume 38, Number 2, April 2016 Jinkun Pan et al. 383
http://dx.doi.org/10.4218/etrij.16.0115.0570

Fig. 3. Results of different URLs: (a) histogram for inference rate
and (b) boxplot for inference precision.

ASMED
LSARGP

URL0 URL1 URL2 URL3

1.0

0.8
0.6
0.4
0.2

0.0

In
fe

re
nc

e
ra

te

(a)

ASMED
LSARGP

URL0 URL1 URL2 URL3

1.0

0.8

0.6

0.4

0.2

0.0

In
fe

re
nc

e
pr

ec
is

io
n

(b)

Table 5. Taint precision statistics of different URLs.

URL
Inference
algorithm

Mean Median p-value Effect size

ASMED 1.00 1.00
URL0

LSARGP 1.00 1.00
0.499994 0.50

ASMED 0.59 0.62
URL1

LSARGP 0.97 1.00
0.000000 0.98

ASMED 0.57 0.61
URL2

LSARGP 0.97 1.00
0.000000 0.98

ASMED 0.72 0.76
URL3

LSARGP 0.99 1.00
0.000000 0.99

80% of the cases for each format. Figure 3(b) shows the
results of inference precision, and Table 5 gives the statistical
comparisons. As we can see from the boxplot, the precision of
LSARGP is much better than ASMED in URL1, URL2, and
URL3. The p-values of them are zero, demonstrating the results
are of statistical significance. The effect sizes are close to one,
which shows the distinct advantage of LSARGP over ASMED.

Fig. 4. Results of different sanitizers: (a) histogram for inference
rate and (b) boxplot for inference precision.

ASMED

LSARGP

SAN0 SAN1 SAN2 SAN3

1.0

0.8

0.6

0.4

0.2

0.0

In
fe

re
nc

e
ra

te

SAN4

(a)

1.0

0.8

0.6

0.4

0.2

0.0

In
fe

re
nc

e
pr

ec
is

io
n

ASMED

LSARGP

SAN0 SAN1 SAN2 SAN3 SAN4

(b)

From the results, we can answer research question 1) in as far as
saying that our method handles the URL rewriting effectively.

B. HTML Sanitization

To evaluate the impact of HTML sanitization, we used
sanitization rules of different strict levels. From SAN0 to
SAN4, the level of strictness increases, which means more
parts of the content might be removed. SAN0 is the case
without any sanitization. SAN1 filters “script” tags and
attributes that can trigger scripts, such as “onclick.” SAN2
further removes attributes like “src” or “href,” which might
include remote scripts. SAN3 uses a more sophisticated
whitelist from HTML Purifier, which sanitizes more potentially
dangerous tags and attributes. SAN4 removes all HTML tags,
which is rarely in reality for the sake of usability and just
included as an extreme case.

The results of different sanitizations are shown in Fig. 4 and
Table 6. Both algorithms perform well without any sanitization.
Their respective performances decrease along with the increase
in the level of strictness. In extreme cases (for example, where

384 Jinkun Pan et al. ETRI Journal, Volume 38, Number 2, April 2016
http://dx.doi.org/10.4218/etrij.16.0115.0570

Table 6. Taint precision statistics of different sanitizers.

Sanitizer
Inference
algorithm

Mean Median p-value Effect size

ASMED 1.00 1.00
SAN0

LSARGP 1.00 1.00
0.499994 0.50

ASMED 0.97 1.00
SAN1

LSARGP 1.00 1.00
0.000000 0.56

ASMED 0.95 1.00
SAN2

LSARGP 1.00 1.00
0.000000 0.65

ASMED 0.78 0.84
SAN3

LSARGP 0.95 1.00
0.000000 0.78

ASMED 0.32 0.00
SAN4

LSARGP 0.31 0.00
0.193539 0.49

all HTML tags are disallowed), both algorithms perform poorly,
because of large parts of removal; thus, there is a lack of
adequate information for inference.

Nevertheless, from Fig. 4(a), we can see that in common
cases such as those of SAN1, SAN2, and SAN3, LSARGP can
infer correctly in more than 75% of cases, which is better than
that of ASMED; this advantage increases along with an
increase in the level of strictness. The advantage of taint
precision is also conspicuous, which is shown in Fig. 4(b) and
Table 5. The p-values are zero and the effect sizes are above 0.5
in SAN1, SAN2, and SAN3. Moreover, the effect size
increases as with the level of strictness. The advantage of
LSARGP is most conspicuous in SAN3, which is the case of
the most practical setting. From the results, we can conclude
that LSARGP performs well in practical cases, which answers
research question 2) in as far as to say that our method is
effective in dealing with HTML sanitization.

C. Running Time

To evaluate the running overhead of our taint inference
method, we recorded the running time of the algorithm in all
runs of previous experiments and report them in Fig. 5. The
mean time is just around 6 ms and the maximum time cost is
only 35 ms, which is negligible compared to the response time
of a web page. Thus, we can answer research question 3) in as
far as we can say that our method is efficient enough to be put
into practical use.

VI. Related Work

XSS vulnerabilities have received a great deal of attention in
research, and a variety of approaches have been proposed to
tackle them. Different from general program bugs, XSS cannot
be discovered by common debugging techniques [21], [22].

Fig. 5. Boxplot of running time.

LSARGP

R
un

ni
ng

 ti
m

e
(m

s)

35

30

25

20

15

5

10

0

Detecting XSS and defending against it at runtime is a more
practical way. Earlier works have been mostly in the form of
server-side defenses. XSSDS [10] is based on passive HTTP
traffic monitoring. Reflected XSS attacks can be detected
through string matching, and stored XSS attacks can be
detected by establishing a set whitelist of scripts. Reference [7]
uses string matching and taint-aware policies to stop generic
injection attacks. It uses precise taint tracking, and the policies
are based on syntactic confinement. XSS-GUARD [23] works
by dynamically learning the set of scripts that a web application
intends to create for any HTML request. Blueprint [24]
converts the untrusted HTML embedded in a page into
JavaScript code to fix the browser's interpretation of the page at
the server side. Reference [25] proposes an efficient black-box
taint inference technique. Taint is inferred by an approximate
substring match. It also proposes a flexible syntax- and taint-
aware policy framework. Client-side approaches protect users
against XSS vulnerabilities without waiting for websites to fix
them. IE [8] comes with built-in XSS protection. It first marks
requests that look suspicious. Responses to such requests are
then scanned for script content that may be derived from
suspicious parameters, and this content is then sanitized to
prevent its interpretation as a script. XSSAuditor [9] proposes
that a new architecture mediate between the HTML parser and
the JavaScript engine, which achieves both high performance
and high precision. NoScript [26] includes an XSS filter, in
which regular expressions are used to extract and identify
malicious data from a URL. Reference [27] presents a
modification to Firefox's JavaScript engine that prevents data
leaks using fine-grained dynamic taint tracking on the client
side, refusing to transfer sensitive information to third parties.
XSSFilt [11] can detect partial script injections, and uses
approximate rather than exact string matching to detect
reflected content. Hybrid approaches are an alternative, in
which the server is responsible for identifying untrusted data

ETRI Journal, Volume 38, Number 2, April 2016 Jinkun Pan et al. 385
http://dx.doi.org/10.4218/etrij.16.0115.0570

that it reports to the browser, and a modified browser ensures
that XSS attacks cannot result from parsing the untrusted data.
BEEP [28] allows the server to supply a policy for the page
through a JavaScript function. Nonespaces [29] is an end-to-
end mechanism that allows a server to identify untrusted
content and reliably convey this information to the client, as
well as allowing the client to enforce a security policy on the
untrusted content. DSI [30] enforces the structure integrity of
web documents through parser-level isolation of untrusted data
in the browser based on a server-specified policy. Content
Security Policy [31] is a technique to support server-supplied
content restrictions by specifying a list of trusted hosts allowed
to provide content for the web page.

VII. Conclusion

In this paper, we proposed and evaluated a new taint
inference technique to infer taints for XSS within the context of
URL rewriting and HTML sanitization. By making an analogy
between the taint inference problem and the molecule sequence
alignment problem in bioinformatics, these two domains are
shown to be connected; the results of our empirical evaluation
confirm such a connection. As a result, we believe that
researchers in the field of taint inference should look to be
inspired by and learn more from the ever-developing
techniques in bioinformatics. For example, a more
sophisticated substitution matrix can be introduced to reflect
the distribution of different characters and the probability of
transformation performed by the server application, which will
be our future work.

References

[1] OWASP, The Ten Most Critical web Application Security Risks,

OWASP, 2013. Accessed Jan. 15, 2016. http://www.owasp.org/

index.php/Top_10_2013-Top_10

[2] B. Martin et al., 2011 CWE/SANS Top 25 Most Dangerous

Software Errors, The MITRE Corporation, 2011. Accessed Jan.

15, 2016. http://cwe.mitre.org/top25/

[3] S. Chen et al., “Defeating Memory Corruption Attacks via Pointer

Taintedness Detection,” Int. Conf. Dependable Syst. Netw.,

Yokohama, Japan, June 28–July 1, 2005, pp. 378–387.

[4] G.E. Suh et al., “Secure Program Execution via Dynamic

Information Flow Tracking,” ACM SIGPLAN Notices, vol. 39, no.

11, Nov. 2004, pp. 85–96.

[5] W.G. Halfond et al., “Using Positive Tainting and Syntax-Aware

Evaluation to Counter SQL Injection Attacks,” ACM SIGSOFT

Int. Symp. Found. Softw. Eng., Portland, OR, USA, Nov. 5–11,

2006, pp. 175–185.

[6] L.C. Lam and T.-C. Chiueh, “A General Dynamic Information

Flow Tracking Framework for Security Applications,” Annual

Comput. Security Appl. Conf., Miami, FL, USA, Dec. 11–15,

2006, pp. 463–472.

[7] W. Xu, S. Bartkar, and R. Sekar, “Taint-Enhanced Policy

Enforcement: A Practical Approach to Defeat a Wide Range of

Attacks,” Conf. Usenix Security, Vancouver, Canada, July 31–

Aug. 3, 2006, pp. 121–136.

[8] D. Ross, IE 8 XSS Filter Architecture/Implementation, Microsoft

Security Research and Defense Blog, 2008. Accessed Jan. 15,

2016. http://blogs.technet.com/srd/archive/2008/08/18/ie-8-xss-

filter-architecture-implementation.aspx

[9] D. Bates, A. Barth, and C. Jackson, “Regular Expressions

Considered Harmful in Client-Side XSS Filters,” Int. Conf. World

Wide Web, Raleigh, NC, USA, Apr. 26–30, 2010, pp. 91–100.

[10] M. Johns, B. Engelmann, and J. Posegga, “Xssds: Server-Side

Detection of Cross-Site Scripting Attacks,” Annu. Comput.

Security Appl. Conf., Anaheim, CA, USA, Dec. 8–12, 2008, pp.

335–344.

[11] R. Pelizzi and R. Sekar, “Protection, Usability, and Improvements

in Reflected XSS Filters,” ACM Symp. Inf. Comput. Commun.

Security, Seoul, Rep. of Korea, May 2–4, 2012, pp. 5–15.

[12] D. Gussfield, Algorithms on Strings, Trees, and Sequences:

Computer Science and Computional Biology, Cambrigde, UK:

The Press Syndicate of the University of Cambridge, 1997, pp.

215–245.

[13] F. Duchene et al., “LigRE: Reverse-Engineering of Control and

Data Flow Models for Black-Box XSS Detection,” Work. Conf.

Reverse Eng., Koblenz, Germany, Oct. 14–17, 2013, pp. 252–261.

[14] F. Duchene et al., “KameleonFuzz: Evolutionary Fuzzing for

Black-Box XSS Detection,” ACM Conf. Data Appl. Security

Privacy, San Antonio, TX, USA, Mar. 3–5, 2014, pp. 37–48.

[15] T.F. Smith and M.S. Waterman, “Identification of Common

Molecular Subsequences,” J. Molecular Biology, vol. 147, no. 1,

Mar. 1981, pp. 195–197.

[16] O. Gotoh, “An Improved Algorithm for Matching Biological

Sequences,” J. Molecular Biology, vol. 162, no. 3, Dec. 1982, pp.

705–708.

[17] R. Hansen. XSS Filter Evasion Cheat Sheet, OWASP, 2016.

Accessed Jan. 15, 2016. http://www.owasp.org/index.php/

XSS_Filter_Evasion_Cheat_Sheet

[18] F. Wilcoxon, “Individual Comparisons by Ranking Methods,”

Biometrics Bulletin, vol. 1, no. 6, Dec. 1945, pp. 80–83.

[19] A. Vargha and H.D. Delaney, “A Critique and Improvement of

the CL Common Language Effect Size Statistics of McGraw and

Wong,” J. Educational Behavioral Stat., vol. 25, no. 2, June 2000,

pp. 101–132.

[20] A. Arcuri and L. Briand, “A Practical Guide for Using Statistical

Tests to Assess Randomized Algorithms in Software

Engineering,” Int. Conf. Softw. Eng., Waikiki, HI, USA, May 21–

386 Jinkun Pan et al. ETRI Journal, Volume 38, Number 2, April 2016
http://dx.doi.org/10.4218/etrij.16.0115.0570

18, 2011, pp. 1–10.

[21] Y. Lei et al., “Effective Fault Localization Approach Using

Feedback,” IEICE Trans. Inf. Syst., vol. 95D, no. 9, Sept. 2012, pp.

2247–2257.

[22] X. Mao et al., “Slice-Based Statistical Fault Localization,” J. Syst.

Softw., vol. 89, Mar. 2014, pp. 51–62.

[23] P. Bisht and V. Venkatakrishnan, “XSS-GUARD: Precise

Dynamic Prevention of Cross-Site Scripting Attacks,” Detection

Intrusions Malware, Vulnerability Assessment, Paris, France, July

10–11, 2008, pp. 23–43.

[24] M.T. Louw and V. Venkatakrishnan, “Blueprint: Robust

Prevention of Cross-Site Scripting Attacks for Existing

Browsers,” IEEE Symp. Security Privacy, Oakland, CA, USA,

May 17–20, 2009, pp. 331–346.

[25] R. Sekar, “An Efficient Black-Box Technique for Defeating Web

Application Attacks,” Annual Netw. Distrib. Syst. Security Symp.,

San Diego, CA, USA, Feb. 8–11, 2009, pp. 21–37.

[26] G. Maone, NoScript-JavaScript/Java/Flash blocker for a safer

Firefox experience, InformAction, 2012. Accessed Jan. 15, 2016.

https://noscript.net/

[27] P. Vogt et al., “Cross Site Scripting Prevention with Dynamic

Data Tainting and Static Analysis,” Annual Netw. Distrib. Syst.

Security Symp., San Diego, CA, USA, Feb. 28–Mar. 2, 2007, pp.

37–48.

[28] T. Jim, N. Swamy, and M. Hicks, “Defeating Script Injection

Attacks with Browser-Enforced Embedded Policies,” Int. Conf.

World Wide Web, Banff, Canada, May 8–12, 2007, pp. 601–610.

[29] M. Van Gundy and H. Chen, “Noncespaces: Using

Randomization to Enforce Information Flow Tracking and

Thwart Cross-Site Scripting Attacks,” Annual Netw. Distrib. Syst.

Security Symp., San Diego, CA, USA, Feb. 8–11, 2009, pp. 38–

55.

[30] Y. Nadji et al., “Document Structure Integrity: A Robust Basis for

Cross-Site Scripting Defense,” Annual Netw. Distrib. Syst.

Security Symp., San Diego, CA, USA, Feb. 8–11, 2009, pp. 1–20.

[31] S. Stamm, B. Sterne, and G. Markham, “Reining in the Web with

Content Security Policy,” Int. Conf. World Wide Web, Raleigh,

NC, USA, Apr. 26–30, 2010, pp. 921–930.

Jinkun Pan received his BS and MS degrees in

computer science and technology from the

National University of Defense Technology

(NUDT), Changsha, China, in 2010 and 2012,

respectively. He is now a PhD candidate in

software engineering at the College of

Computer, NUDT. His main research interests

include web security, client-side vulnerability, and malicious script

detection.

Xiaoguang Mao received his PhD degree in

computer science from the National University

of Defense Technology (NUDT), Changsha,

China, in 1997. He is now a professor at the

College of Computer and Laboratory of Science

and Technology on Integrated Logistics Support,

NUDT. His research interests include high

confidence software, software maintenance, and automated program

repair.

Weishi Li received his MS degree in computer

science and technology from the National

University of Defense Technology (NUDT),

Changsha, China, in 2011. He is now a PhD

candidate in software engineering at the College

of Computer, NUDT. His main research

interests include fault localization and

automated program repair.

