
326 Hanshen Xiao et al. © 2016 ETRI Journal, Volume 38, Number 2, April 2016
http://dx.doi.org/10.4218/etrij.16.0115.0575

We propose and describe new error control algorithms
for redundant residue number systems (RRNSs) and
residue number system product codes. These algorithms
employ search techniques for obtaining error values from
within a set of values (that contains all possible error
values). For a given RRNS, the error control algorithms
have a computational complexity of t · O(log2 n + log2 m)
comparison operations, where t denotes the error
correcting capability, n denotes the number of moduli, and
m denotes the geometric average of moduli. These
algorithms avoid most modular operations. We describe a
refinement to the proposed algorithms that further avoids
the modular operation required in their respective first
steps, with an increase of log2 n to their computational
complexity. The new algorithms provide significant
computational advantages over existing methods.

Keywords: Chinese remainder theorem, residue
number systems, redundant residue number systems,
RNS product codes, mixed radix system, error control,
computational complexity, permutations, CRT, RNS,
RRNS, RNS-PC, MRS.

Manuscript received June 25, 2015; revised Oct. 19, 2015; accepted Oct. 29, 2015.
Hanshen Xiao (xhs13@mails.tsinghua.edu.cn) is with the Department of Mathematics,

Tsinghua University, Beijing, China.
Hari Krishna Garg (corresponding author, eleghk@nus.edu.sg) is with the Electrical &

Computer Engineering Department, National University of Singapore, Singapore.
Jianhao Hu (jhhu@uestc.edu.cn) is with the National Science and Technology Key Lab of

Communications, University of Electronic Science & Technology of China, Chengdu, China.
Guoqiang Xiao (gqxiao@swu.edu.cn) is with the College of Computer and Information

Science, Southwest University, Chongqing, China.

I. Introduction

Error control techniques play an important role in the
reliability of signal transmission in communication systems.
This is due to their capability to enhance the robustness of
information transmission in noisy environments.

Residue number systems (RNSs) are used to express a
computation in a large integer ring as a direct sum of
computations in a number of smaller integer rings. These
computations can be carried out in parallel.

The Chinese remainder theorem (CRT) forms a basis for an
RNS. Redundant residue number systems (RRNSs) have
recently been applied to communication systems, including
wireless local area network (WLAN) [1], code division
multiple access (CDMA) [2], space–time block codes [3],
multicarrier modulation [4], wireless sensor networks [5], and
cognitive radio [6]. Application of RRNSs to provide reliability
in cloud storage services is described in [7].

In 1976, the concepts of legitimate range and illegitimate
range were introduced [8], an important breakthrough in the
field of RRNS-based error control.

One of the earliest schemes for single-burst errors and
double errors was developed in 1992. It computes syndromes
of the digits in a received vector and compares them with some
observations [9], [10].

Knowledge of Hamming weight and minimum distance was
used in detecting and correcting error, in [9] and [10]. Yang and
Hanzo [11] used base extension (BEX) to achieve error
correction in wireless channels suffering from low reliability.
Their method requires decoding and encoding operations for
each BEX process, and recovers digits by the CRT. In addition,
Yang and Hanzo threw new light on the problem with the
theory of minimum distance decoding [12].

New Error Control Algorithms for
Residue Number System Codes

Hanshen Xiao, Hari Krishna Garg, Jianhao Hu, and Guoqiang Xiao

ETRI Journal, Volume 38, Number 2, April 2016 Hanshen Xiao et al. 327
http://dx.doi.org/10.4218/etrij.16.0115.0575

An algorithm was proposed in [13] to recover directly the
original digits from a received vector based on combinations of
residues. The method used in [13] is based on continued
fractions and Euclid’s algorithm. It is a variant of the multiple
error correction algorithm in [14]. The work of [13] and other
works by the same authors related to [13] can be found in [15]
and [16]. Relying on [12], Goldreich and others extended [13]
with theories of maximum likelihood decoding (MLD) to
determine error-location residues with fewer trials [17]. More
recent work on scaling and error correction can also be found
in [18].

The major contributions of this work are given below. In
what follows, RRNSs and RNS-PCs are collectively termed as
RNS codes (RNSCs). First, a unified mathematical framework
for RNSCs is developed. Second, new computationally
efficient algorithms for error control in an RNSC are described.
Two cases are considered: (a) pure error correction and (b)
simultaneous error correction and error detection. In both cases,
the algorithms decode correctly if the number of errors is less
than or equal to the error control capability of the RNSC. These
algorithms provide significant computational savings in
comparison to existing works. The methods described here are
based on search techniques for use within an ordered set.
Various refinements are described that simplify step 1 of these
algorithms. The computational complexity of the proposed
algorithms is t · O(log2 n + log2 m). For a given RNSC, t is the
error correcting capability, n is the number of moduli, and m

is their geometric average. In comparison, the computational

complexity of existing works is (i) 2O (log) ,ab b where a

is a constant and 21
1 log

n

ii
b m

 in [13], [15], [16],

and (ii) O(nt) in [17].
The algorithms presented in this paper require fewer

operations by comparison. In addition, they avoid most
modular computations. Consequently, the proposed algorithms
are expected to be simpler to implement and better suited
for high-speed application environments. A preliminary
analysis of hardware implementation supports this assertion.

This paper is organized as follows. Section II provides a
brief description of the CRT and coding theory for RNSs.
Sections III and IV are on the key contributions of this work.
Error control algorithms are obtained in Section III and
examples are presented to illustrate these algorithms. A
refinement to the error control algorithms in Section III is
described in Section IV — the refinement avoids modular
operations required in the first step of each of the proposed
algorithms. The refinement results in a slight increase in
complexity. Further refinements are also described that
simplify computations, once again, in the first step of each of
the proposed algorithms. Computational comparisons with

existing algorithms are presented in Section V. Section VI
concludes this work.

II. Mathematical Preliminaries

1. RNS

An RNS is a finite integer ring (Z(MK)) defined by k
relatively co-prime moduli, m1, m2, … , mk, arranged in
ascending order (without loss of generality). The range of the
RNS is given by [0, MK), where

1

.
k

K i
i

M m

 (1)

An integer X [0, MK) in the given RNS is represented by a
vector, x, of length k, via the modular computation

 X  x = (x1 x2, … , xk), (2)
where

 xi  X (mod mi) (i = 1, 2, … , k). (3)

RNSs express a computation in a large integer ring as a
direct sum of computations in a number of smaller integer
rings; the computations can be carried out in parallel. For
instance, multiplication of integers A and B in Z(MK) is
computed as k parallel multiplications ai·bi (mod mi), i =
1, … , k.

2. Permutation

Given a set of integers S = {s1, s2, … , s} of cardinality ,

we define a permutation of S as a rearrangement of the

elements in S in a different order. When S is an RNS Z(MK),

one such permutation is S = {P s1, P s2, … , P s}. Here, P

is an integer, and multiplication P sa is conducted modulo MK.

Not all values of P lead to a permutation. The necessary and

sufficient condition is that P and MK must be co-prime; that is,

gcd(P, MK) = 1. For an RNS Z (MK), a permutation gives rise to

a one-to-one mapping, represented by

X P·X  (mod MK). (4)

As X takes values in the set {0, 1, … , MK – 1}, X also takes
values in the same set, though in a different order. Any P such
that gcd(P, MK) = 1 can be used. Such integers always exist. In
fact, there are (MK) such values in the range (0, MK); (M)
being the Euler totient function of M. For any given
permutation, the following two properties hold:
▪ X = 0 if and only if X = 0.
▪ ix X (mod mi) = pi xi (mod mi), pi P (mod mi), i = 1, 2,

… , k.
We are interested in values of P that are associated with CRT

328 Hanshen Xiao et al. ETRI Journal, Volume 38, Number 2, April 2016
http://dx.doi.org/10.4218/etrij.16.0115.0575

computations and RNSCs. In addition, we show that the use of
permuted residues simplify decoding algorithms in some cases.

3. CRT-I

Given x, computation of X, 0 ≤ X < MK, can be done via the
CRT; this can be stated as follows:

1

mod .
k

K
i i K

i i

M
X a x M

m

 (5)

The scalar ai, is computed a-priori by solving the congruence

 1 modK
i i

i

M
a m

m

   (i = 1, 2, … , k). (6)

It is clear from (6) that

gcd(ai, mi) = 1,  (i = 1, 2, … , k). (7)

The CRT computation in (5) can be performed in two steps:
Step 1: Compute the permuted residues

(mod)i i i ix a x m   (i = 1, 2, … , k). (8)

Step 2: Compute X as

1

(mod).
k

K
i K

i i

M
X x M

m

 (9)

Computation of X from x necessarily involves large integers
as the dynamic range of RNS is large. For the integers ai (i = 1,
2, … , k) in (5), consider the integer T (0 < T < MK) such that

 T ai (mod mi)  (i = 1, 2, … , k). (10)

The integer T can be obtained using the CRT. Stated explicitly,

1

2

1

mod

mod .

k
K

i i K
i i

k
K

i K
i i

M
T a a M

m

M
a M

m

 (11)

It follows from (7) and (10) that

gcd(T, MK) = 1. (12)

A. CRT-II: Using Permuted Residues

Based on (8), we may also use permuted residues

 1 2 , ... , ,kx x x x (13)

instead of x = (x1 x2 ··· xk) in residue arithmetic. In such a case,
X is obtained from (9) in a direct manner. It is clear from (5),
(8), and (12) that X x = (x1 x2, … , xk) and X

1 2(, ... ,)kx x x x are related via the permutation

 X = T X (mod MK). (14)

Given X, X can be recovered as

 X T–1 X (mod MK). (15)

A unique T–1 (mod MK) always exists due to (12).

B. CRT-III Computation with Permutation

Given the CRT in (5), we can also write

1

mod
k

K
i K

i i

M
X T x M

m

 . (16)

This provides an alternative expression and a way to compute
X from its residues in the given RNS. The CRT computation
based on (16) can be performed in two steps:
Step 1: Compute

1

.
k

i
i i

M
X x

m

 (17)

Step 2: Compute X as

 X T X (mod MK). (18)

The three formulations of the CRT, enumerated as CRT-I,
CRT-II, and CRT-III, are equivalent and have their own
computational features, thus making each one uniquely suitable
for a certain computational environment (as shown in
refinement 3 in Section IV). In essence, T establishes a
permutation between (i) X and X via (15), and (ii) X and X via
(18). We note that for a given RNS, T is fixed and needs to be
computed once only. Finally, a permutation in an RNS can be
carried out via any P such that gcd(P, MK) = 1. A permutation
is used to establish decoding algorithms for an RNS-PC.

4. Mixed Radix System (MRS)

An MRS can be used to compute X from its residues x. In an
MRS, X is represented as follows:

X = y1 + y2 m1 + + yn (m1 m2, … , mk–1).

The mixed radix digits satisfy 0 ≤ yi < mi. They are computed
from x using RNS-to-MRS conversion algorithms [19].

In our work, integer X can be computed from its residues
using either the CRT or the MRS. Such a computation

Table 1. Permutations and CRT computations.

X x X x X x

1 (1 1) 2 (2 2) 8 (2 3)

2 (2 2) 4 (1 4) 1 (1 1)

3 (0 3) 6 (0 1) 9 (0 4)

4 (1 4) 8 (2 3) 2 (2 2)

13 (1 3) 11 (2 1) 14 (2 4)

ETRI Journal, Volume 38, Number 2, April 2016 Hanshen Xiao et al. 329
http://dx.doi.org/10.4218/etrij.16.0115.0575

constitutes the first step in the new decoding algorithms. We
also use the CRT to establish mathematical aspects of the new
decoding algorithms. The choice of CRT versus MRS for an
actual computation rests with the system designer.

Example 1. Consider an RNS defined by residues m1 = 3 and

m2 = 5. Then, we have MK = m1 m2 = 15, and X is an integer in

the range (0, 15). The values a1 and a2 needed for the CRT are

obtained by solving congruences a1 5 1 (mod 3) and a2 3

1 (mod 5). This results in a1 = a2 = 2. Using the CRT on a1 and

a2, we get T = 2 and T–1 = 8 (mod 15). Selected integers X, X,
and X for the permutations in (15) and (18) and their residues

are given in Table 1.

5. RRNS

An RRNS is obtained by appending (n – k) additional

relatively co-prime moduli, mk+1, … , mn, to an RNS defined by

moduli m1, m2, … , mk. We further assume that moduli m1, m2,

… , mk, mk+1, … , mn are arranged in an ascending order. An

RRNS is a (n, k) code with redundancy given by

1

n

R i
i k

M m

 . (19)

An integer X [0, MK) in the given RNS is represented by a

codeword, x, of length n, via modular computations as follows:

X x = (x1 x2, … , xk xk+1, … , xn), (20)
where

xi X (mod mi)  (i = 1, 2, ... , n). (21)

The k residues (x1 x2, … , xk) constitute the information digits,

and the (n – k) residues (xk+1, … , xn) the parity digits. Let

MN = MK MR. (22)

Given a vector, a, the Hamming weight of a, denoted by

H(a), is the number of non-zero elements in a. The Hamming

distance between two vectors is the number of places in which

the two vectors differ. The Hamming distance between two

codewords is same as the Hamming weight of another

codeword. The Hamming weight of any non-zero codeword in

an RRNS is at least d = n – k + 1. An RRNS is a maximum

distance separable (MDS) code having minimum distance d.

These properties follow even though RRNSs are nonlinear [19].

Example 2. Consider a (4, 2) RRNS defined by (m1 m2 m3

m4) = (11 13 14 15). The legitimate range is (0, 143), MR = 210.

This is a minimum distance 3 RRNS. Given an integer X = 25

 (0, 143), we have x = (3 12 11 10). If we extend this RRNS

with a third redundant modulus, say m5 = 17, then we get a

(5, 2) minimum distance 4 RRNS.

6. RNS-PC

An RNS-PC is defined by n moduli (m1 m2, … , mn) such
that all codewords when converted to equivalent integer form
are divisible by a code-generator integer G, gcd(G, MN) = 1.
Thus, for an integer X in the legitimate range (0,)KM , MK =
MN/G + 1, the corresponding codeword x is obtained as G X
 x = (g1x1 g2x2, … , gnxn), where multiplications are
conducted mod respective moduli. Here, is the well-known
floor function. The minimum distance for an RNS-PC is d, if

and only if G satisfies
1

1 1

d d

n i n i
i i

m G m

 . RNS-PCs can

be studied as an equivalent of cyclic codes over finite fields.
Example 3. Consider an RNS-PC defined by (m1 m2 m3 m4) =

(13 16 17 19). For a minimum distance 3 RNS-PC, we have
m4m3m2 > G m4m3 or 5,168 > G 323. Choosing G = 327,
we have (0, 206) as the legitimate range for this RNS-PC.

III. Unified Framework and Algorithms for Error
Control in RNS

Together, RRNSs and RNS-PCs will be referred to as
RNSCs. A minimum distance d RNSC can correct up to t
residue errors (also called its error-correcting capability), where

 1 2t d . (23)

A code that simultaneously corrects up to residues and
detects up to (>) residues in error has minimum distance

 d = + + 1. (24)

It is clear that the (4, 2) RNSC in example 2 can correct a
single error, while the (5, 2) RNSC can simultaneously correct
single errors and detect double errors. In the following, we
propose new algorithms for error control for RNSCs.

1. Error Phenomenon

For a transmitted codeword x, an additive error, ei, (ei ≠ 0) in
the ith residue results in a received residue vector, y.

y = x + e, (25)

where
 yi xi + ei (mod mi)  (i = 1, 2, … , n). (26)

For an error, both its location and value are unknown. The
Hamming weight of e, H(e), is the number of errors in y. Using
a triangular inequality, we have H(y) ≥ H(x) – H(e), or

 H(y) ≥ d – H(e). (27)

The error model in (25) and (26) is adopted all throughout
this work for various error control algorithms.

The first step in error control algorithms in RNSCs being

330 Hanshen Xiao et al. ETRI Journal, Volume 38, Number 2, April 2016
http://dx.doi.org/10.4218/etrij.16.0115.0575

described here is as follows. Given y, compute Y from y and
check if it is in legitimate range [0, MK) for the given RNSC.
Thus far, the first step in decoding of an RNS-PC has been
computation of Y from y and checking if G | Y [19]. In the
following, we first unify step 1 for RRNS and RNS-PC leading
to a unified framework for error control in RNSCs. Error
control algorithms for RNSCs is then presented.

2. RRNS

Consider an (n, k) RRNS with H(x) ≥ d, x ≠ 0, and a
received residue vector y in (25).
Lemma 1. If up to t errors occur, then

1

0
n t

N i
i

E M m

 , (28)

0 ≤ X + E < MN, (29)

where E is the error integer corresponding to residue vector e.
Proof. If H(e) = a, then e has a non-zero and (n – a) zero
residues. Let e be non-zero in locations I = (i1, i2, … , ia) and 0
in all others. If a residue is 0, then E is a multiple of
corresponding modulus. Thus, E is a multiple of all moduli mi,
i = 1, … , n, that do not belong to I. The largest value of E such
that it is non-zero in locations I is given by

1 1

1 1 1

1 11

0 1 ,

,

.

n n

i i
i i

i i

n n n

i i i
i i i

i i i

n n n

i i N i
i ii
i i

E m m

m m m

m m M m

I I

I I I

I I

The largest value of E implies that the moduli “not belonging”
to set I is the (n – a) smallest moduli. Hence,

1

0
n a

N i
i

E M m

 .

Again, the largest value of E is obtained when a is as large as
possible. We note that Lemma 1 is applicable if a ≤ t. Settin
a = t leads to (28). Equation (29) is obtained by adding MK to

both sides of (28) and noting that
1 1

.
k n t

K i i
i i

M m m

 ■

Using Lemma 1, we can express (25) in integer form as

Y = X + E (mod MN) = X + E. (30)

Here, X has residue vector x and E has residue vector e having
0’s in all locations except for residue positions where errors
have occurred. The first step in the error control algorithms for
RRNSs being described here is to compute Y from y. This can

be done using either the CRT or the MRS.

3. RNS-PC

Expressing (25) in integer form for RNS-PC, we have Y =
G X + E (mod MN). To test whether Y is a codeword or not,
the existing algorithms for RNS-PC compute Y first and then
test if G | Y [19]. We now merge the two steps to compute

Y1 G–1Y (mod MN) = X + G–1 E (mod MN)
= X + F (mod MN),    (31)

where F = G–1 E (mod MN). Computationally,

 1
1

mod
n

N
i N

i i

M
Y y M

m

 , (32)

where the permuted residues iy are given by

1

1

mod

mod .

i i i i i

i i i i i i

y g a y m

a x g a e m

 (33)

Thus, F is a permuted version of E via (G–1 (mod MN)) and,

Y1 = X + F. (34)

Two key properties of such a computation are as follows:
▪ P1: H(f) = H(e).
▪ P2: Y is a codeword if and only if Y1 is a legitimate integer;

that is, 0 ≤ Y1 < MK.

Writing F = G–1E (mod MN) in residue form, f = G–1e or

 1 mod ,i i i if g e m gi G (mod mi), i = 1, 2, … , n. Since

gcd(gi, mi) = 1, fi = 0 if and only if ei = 0. This establishes P1,

thereby showing that if e is a correctable/detectable error vector,
then so is f, and vice-versa. As P1 is valid, (28) holds for F. P2

follows from (28) and (31) through (34). P1 and P2 taken with

Lemma 1 further lead to Y1 = X + F, an expression for RNS-
PCs that is equivalent to (30) for RRNSs.

In essence, divisibility of Y by G is now replaced by testing
for Y1 being in legitimate range [0, MK). This unifies error
control methods for RRNSs and RNS-PCs. In an RRNS, given
y = x + e, we compute Y from y with Y = X + E. In an RNS-PC,
given y = G x + e, we compute Y1 from y with Y1 = X + F and
H(f) = H(e). Moving forward, we denote Y1 by Y and F by E in
our description of error control algorithms within the unified
framework for RNSCs. Again, the computation of Y from its
residues can be carried out using either the CRT or the MRS.

Given Y, the task of any decoding algorithm is to estimate
X and E, denoted by X̂ and ˆ ,E respectively, such that Y =
X̂ + ˆ.E The decoding algorithm decodes “correctly” if X =
ˆ .X Correct decoding must take place if the number of errors

in y does not exceed the error-correcting capability of the
RNSC. The following two cases follow from this:
▪ Case I: When used purely for error correction, correct

ETRI Journal, Volume 38, Number 2, April 2016 Hanshen Xiao et al. 331
http://dx.doi.org/10.4218/etrij.16.0115.0575

decoding must take place if H(e) ≤ t.
▪ Case II: When used for simultaneous error correction and

detection, correct decoding takes place if H(e) ≤ . Further,
the decoding algorithm detects errors if < H(e) ≤ .
Some general properties of an RNSC are as follows. Every

legitimate integer X and the corresponding codeword x satisfy

0 ≤ X < MK, (35)

H(x) ≥ d  (x ≠ 0).     (36)

Hence an arbitrary integer R, such that H(r) < d, is an
illegitimate integer; that is, MK ≤ R < MN. It follows that if there
are a errors in y, then H(e) = a and H(y) ≥ d – a.
Lemma 2. If there are at most (d – 1) errors in y (that is, H(e) <
d), then Y is an illegitimate integer.
Proof. All codewords differ in at least d places. As x and y
differ in (d – 1) places or less, y cannot be a codeword. ■

For an RNSC, we construct a set Vl, referred to as an
“l-error-set,” which contains all possible integers E such that
H(e) = l. Thus, we have

Vl = {E, e: H(e) = l}. (37)

Based on Vl, we construct a set Ub, referred to as an “error-set,”
which contains all possible integers E such that 1 ≤ H(e) ≤ b.
Mathematically, we have

Ub = {E, e: 1 ≤ H(e) ≤ b} = V1 V2 , … , Vb. (38)

We further assume that the elements in Ub are listed in an
ascending order. It is clear that all integers in Vl and hence Ub
are illegitimate as long as b < d. The error-set Ub is computed
only once and then stored for use in the decoding algorithm. To
reinforce the unified framework for error control in RNSCs, we
note that given the permutation F P E (mod MN), the
elements in the set Vl are the same for both F and E as H(f) =
H(e). Hence, under the condition that the same moduli are used
for both, the sets Ub for an RRNS and an RNS-PC are identical.
The only difference is that the error vectors for such an RRNS
and RNS-PC are associated with their integer representation
via the permutation P G–1 (mod MN).

The cardinality of Ub (that is, the number of error vectors e
having a Hamming weight in the range 0 < H(e) ≤ b) can be
approximated by a polynomial in n of degree b as follows:

1

1
b

ln
b l

l

C m

 U . (39)

We compute m as the geometric mean of all the residues,
1

1

1

nn
n

i N
i

m m M

 . (40)

Here, nCr = n!/[r!(n – r)!] is the combinatorial function. The
expression in (39) is exact if moduli are equal. Since they are

not, we take geometric mean to estimate the cardinality of Ub.
Example 4. Consider a (4, 2) RRNS defined by (m1 m2 m3

m4) = (2 3 5 7). Let b = t = 1. The integers E included in U1
along with their respective 4-dimensional vectors are 105 (1
0 0 0), 70 (0 1 0 0), 140 (0 2 0 0), 126 (0 0 1 0), 42
(0 0 2 0), 168 (0 0 3 0), 84 (0 0 4 0), 120 (0 0 0 1), 30
 (0 0 0 2), 150 (0 0 0 3), 60 (0 0 0 4), 180 (0 0 0 5),
and 90 (0 0 0 6). The error-set including the aforementioned
integers sorted in ascending order is U1 = {30, 42, 60, 70, 84,
90, 105, 120, 126, 140, 150, 168, 180}. In this case, U1 = 13.
The approximated values are m = 4 and U1 12 as per (39).
Similarly, U2 = 69, while the approximate value is U2 67.

Example 5. Consider an RNS-PC defined by the same
residues as in example 4 with G = 37, G–1 = 193. Let b = t = 1.
All the integers E included in U1 along with their respective
4-dimensional vectors obtained via the permutation P
G–1 (mod MN) are 105 (1 0 0 0), 70 (0 1 0 0), 140 (0 2
0 0), 126 (0 0 3 0), 42 (0 0 1 0), 168 (0 0 4 0), 84
(0 0 2 0), 120 (0 0 0 4), 30 (0 0 0 1), 150 (0 0 0 5), 60
 (0 0 0 2), 180 (0 0 0 6), and 90 (0 0 0 3). The error-set
including the aforementioned integers sorted in ascending
order is the same as in example 4.

We now describe a decoding algorithm for the two cases,
separately, though the analysis is similar.

4. Case I

Error correction up to t errors; 0 < H(e) ≤ t. For correcting up
to t errors, we create the error set Ut. Given (19) and (22) and
the ensuing discussion, it is clear that Y and X are illegitimate
and legitimate integers, respectively, Y = X + E (E Ut). In
addition, E < Y. The following theorem plays a key role in the
formulation of new decoding algorithms.
Theorem 1. Given Y = X + E, X and E are unique for H(e) ≤ t.
Proof. If these values are not unique, then there are at least two
sets (X1, E1) and (X2, E2) such that

 Y = X1 + E1 = X2 + E2. (41)

Without any loss in generality, let X1 > X2. Rearranging (41),

 X1 – X2 = E2 – E1. (42)

Let X3 = X1 – X2 and E3 = E2 – E1. Thus, X3 is legitimate with
H(x3) ≥ 2 t + 1, while H(e3) ≤ H(e2) + H(e1) ≤ t + t = 2 t. Clearly,
(41) is not possible, as the Hamming weight of the left side of
(42) can never equal the Hamming weight of the right side of
(42). ■

Theorem 1 leads to the following new decoding algorithms.
Decoding Algorithm 1. Given Y, test if E = 0. If not, then find
the largest integer Ê in Ut such that Ê ≤ Y. Thus, the
decoding algorithm finds Ê as “the largest integer in Ut less
than or equal to Y.” The corresponding X̂ is computed as

332 Hanshen Xiao et al. ETRI Journal, Volume 38, Number 2, April 2016
http://dx.doi.org/10.4218/etrij.16.0115.0575

X̂ = Y – Ê . (43)

This analysis also leads us to conclude that the difference
between any two arbitrarily selected elements in Ut is at least
MK. Finally, noting that 0 ≤ X < MK, we have

Y – MK < E ≤ Y. (44)

A flow chart for new decoding algorithm 1 is shown in
Fig. 1. The bulk of the complexity consists in searching Ut to

determine Ê . There are numerous binary tree–based search

algorithms known in the literature that have a complexity of
O(log2 A), where A is the cardinality of the ordered set A. In

essence, these algorithms are based on the “divide-and-

conquer” technique. Via (39), |Ut| can be approximated by a
polynomial of the kind |Ut| .t ta n m Hence, the

complexity of decoding algorithm 1 is t O(log2 n + log2 m).

The error-set Ut is straightforward to obtain for a given RNSC,
as is shown in examples 4 and 5.

Example 6. Consider the same RRNS as in example 4. Let

X = 3, x = (1 0 3 3), and an error be introduced in the second

residue to obtain y = (1 1 3 3). Therefore, Y = 73, Y – MK = 67.

Thus, we need to search in U1 to find E within (67, 73). There

are 13 elements in U1 as listed in example 4. Let us denote

them by U1(i), 1 ≤ i ≤ 13. First, compare U1(7) = 105 with 73 to

get 105 > 73. Since 105 > Y, we have E as one of {U1(1), … ,

U1(6)}. Second, compare U1(4) = 70 with 73 to get 70 < 73,

thus further narrowing E as one of {U1(4), … , U1(6)}. Third,

compare U1(5) = 84 with 73 to get 84 > 73. This eliminates

U1(5) and U1(6), Ê = U1(4) = 70 with X̂ = Y – Ê = 3.
Following RNS-PC in example 5, let X = 3 with the

codeword G X (1 0 1 6). Let an error be introduced in the
second residue to obtain y = (1 1 1 6). Therefore, in step 1, we
compute the permuted version of y using (G–1 (mod MN)) (193
(mod 210)) to obtain Y = 73, Y – MK = 67. The rest of the steps
are identical to the steps for RRNS.

Example 7. Consider a double error correcting (10, 6) RRNS
defined by (m1, … , m10) = (23 25 27 29 31 32 67 71 73 79). In
this case, t = 2 and |U2| = 87,899.

5. Case II

Simultaneous error correction up to errors and detection up
to errors; 0 < H(e) ≤ , < . For correcting up to errors,
we create the error-set U. Based on a similar analysis as in
Case I, the new decoding algorithm for Case II is as follows.

Decoding algorithm 2. Given Y, test if E = 0. If not, then
find the largest integer Ê in U such that Ê ≤ Y. The
corresponding X̂ then is computed as X̂ = Y – Ê . Theorem 1
also holds in this case. We note that Case II requires fewer

Fig. 1. Flow chart for decoding algorithm for case I.

Receive residues y

Compute Y via
CRT or MRS 0 Y < MK? ˆ ˆ, 0X Y E

Search Ut to obtain Ê as
largest integer in Ut less

than or equal to Y.

ˆ ˆX Y E

ˆ0 ?KX M

Y

N

Y ˆ ˆOutput ,X E

Declare “uncorrectable
errors in Y” STOP

N

comparisons as |U| < |Ut| for < t. The error control algorithm
for simultaneous correction of up to and detection of up to
errors (d = + + 1, <) is almost the same as the one
described in Fig. 1 with Ut replaced by U.

Example 8. Consider a (16, 10) RRNS defined by (m1, … ,
m16) = (23 29 31 32 35 37 39 41 43 47 53 59 61 67 71 73). In
this case, we can use U3 for correcting three errors, |U3| =
51,159,743, or U2 for simultaneous correction of up to two and
detection of up to four errors, |U2| = 245,231.

Example 9. Consider the same RRNS as in example 7. Let
us use it for simultaneous correction of one error and detection
of up to three errors. Here, MK = 446,623,200, |U1| = 447. Let
X = 15, x = (15, … , 15), and two errors be introduced to obtain
y = (16 15, … , 15 75). First, Y = 2,285,962,767,813,615. Ten
comparisons are needed in the decoding algorithm.
▪ 1: U1(224) = 6,203,792,762,208,000 > Y,
▪ 2: U1(112) = 3,161,933,085,254,400 > Y,
▪ 3: U1(56) = 1,645,856,960,421,600 < Y,
▪ 4: U1(84) = 2,377,348,942,831,200 < Y,
▪ 5: U1(70) = 2,014,108,061,155,200 < Y,
▪ 6: U1(77) = 2,194,475,947,228,800 < Y,
▪ 7: U1(81) = 2,326,422,285,828,000 > Y,
▪ 8: U1(79) = 2,268,979,760,252,000 < Y,
▪ 9: U1(80) = 229,734,2007,255,150 > Y,
▪ 10: Ê = U1(79) = 2,268,979,760,252,000, X̂ = Y – Ê =

16,983,007,561,615 > MK.
Thus, “uncorrectable errors in Y” is declared.

ETRI Journal, Volume 38, Number 2, April 2016 Hanshen Xiao et al. 333
http://dx.doi.org/10.4218/etrij.16.0115.0575

IV. Further Refinements

1. Refinement 1

One may reason that computation of Y in the first step of the
new decoding algorithms described here still requires a
modular operation (mod MN) if the CRT is used to compute Y.
We now describe a refinement, whereby such an operation
may be avoided at an increase of log2 n to the number of
comparisons. The first step in the decoding algorithms is the
computation of Y, which can be carried out using either the
CRT or the MRS. Mathematically, Y can be represented by

1

mod ,
n

N
i N

i i

M
Y y M

m

 (45)

where (mod)i i i iy y a m , i = 1, 2, … , n. Given y, the

computation in (45) can equivalently be expressed as

1

,
n

N
i

i i

M
Y y

m

 (46)

 mod NY Y M . (47)

To avoid the modular operation in (47), one may compute Y in
(46) instead of Y in (47). Recalling (30), we may write Y as

Y = Y + MN = X + E + MN, (48)

where is an unknown that satisfies 0 ≤ < n. Based on (48),
we construct n sets, Ai, i = 0, … , n – 1, as follows:

Ai = {all values of X + E + i MN; 0 ≤ X <MK, H(e) ≤ t}.
 (49)

Since 0 < X + E < MN for H(x) ≥ 2t + 1 and H(e) ≤ t, these sets
are disjoint. We create a super error-set

S
bU , an n-fold replica

of the previously described error-set Ub, as follows:

 S , , , 1 ; : ()l N NE E M E n M H l V e e , (50)

S S S S
1 2 , ... ,b b U V V V . (51)

The elements of S
bU are listed in an ascending order. We also

have | S
bU | = n |Ub|. Based on this formulation of

S
bU , the

decoding algorithms can now be described as follows:
▪ Step 1: Compute Y using (46). When E = 0, X one of n

intervals, ith interval = [i MN, i MN + MK], i = 0, … , n – 1.

▪ Decoding algorithm 1: Given Y, test if E = 0. If not, find the

largest integer Ê in S
tU such that Ê ≤ Y.

▪ Decoding algorithm 2: Given Y, test if E = 0. If not, find the

largest integer Ê in
S
U such that Ê ≤ Y.

Each iteration in the search process narrows the number of

possible values of Ê by a factor of two. Here, | S
bU | = n |Ub|.

Hence, log2 n additional comparisons reduce the search to its
original size of |Ub|.

Fig. 2. Modified flow chart for decoding algorithm for case I.

Receive residues y

Compute Y via CRT or MRS

Search Ut in (52) to obtain

Ê as largest integer in Ut
less than or equal to Y.

ˆ ˆX Y E

ˆ0 ?KX M
Y ˆ ˆOutput ,X E

STOP

N

Declare “uncorrectable errors
in Y”

The search scheme may be further improved in hardware

implementation by arranging elements in
S
bU into different

subsets, where the arranged elements have the same bit-length

in each subset. In this case, the decoding algorithms carry out a

bit-length check of Y, and then implement the search scheme

in the subset in which numbers have the same bit-length as Y.

2. Refinement 2

If it is not required to isolate the case of no error (Y = X, E =
0; y = x, e = 0) from the case of one or more errors (Y ≠ X, E ≠
0; y ≠ x, e ≠ 0) at the receiver, then Ub is obtained as

Ub = {E, e: 0 ≤ H(e) ≤ b} = V0 V1 , … , Vb. (52)

Similarly, S
bU is constructed as:

S S S S
0 1 , ... ,b b U V V V . (53)

In this case, no comparisons are required once Y in (30) or Y in

(46) is computed; furthermore, a search is performed even

when E = 0 (e = 0). A flow chart for decoding algorithm 1
incorporating these refinements is shown in Fig. 2. In this flow

chart, Ut can be replaced by U to obtain the decoding

algorithm for simultaneously correcting and detecting (<
) errors. Finally, Y and Ut in Fig. 2 can be replaced by Y and

S
tU in (53), respectively, to obtain the decoding algorithm for

correcting up to t errors. In Fig. 2, Ut is replaced by S
U to

obtain the decoding algorithm for simultaneously correcting

and detecting (<) errors. In these cases, Y in Fig. 2 is

computed using (46) instead of the CRT or the MRS. As a
result, decoding algorithms incorporating these refinements

334 Hanshen Xiao et al. ETRI Journal, Volume 38, Number 2, April 2016
http://dx.doi.org/10.4218/etrij.16.0115.0575

avoid all modular operations in Step 1.

3. Refinement 3

The CRT computation of Y in RRNS can be simplified by
computing and transmitting permuted residues x instead of x,

(mod)i i i ix a x m , i = 1, 2, … , n. The arithmetic remains

the same. In this case, y = x + e, and Y is calculated as

1 1

mod
n n

N N
i i N

i ii i

M M
Y x e M

m m

 , (54)

leading to Y = X + T–1E (mod MN). There is no other change
in the error control algorithms. This saves n modular
multiplications required to compute x from x at the receiving
end.

The framework described here can also be used for error
control in other scenarios. For instance, if we are interested in
controlling burst errors, then Ub is the error-set corresponding
to all correctable burst errors of up to length b. Finally, the error
correction/list decoding problem mentioned in page 1,332 of
[13] requires computation of all codewords that differ from y in
up to e places, e > t. This can also be done by using the
methodology described here. In such a case, the decoding
algorithm uses error-set Ue instead of Ut and finds codewords
within MK of Y. There may be multiple solutions as e > t.

V. Computational Complexity Comparisons

The work of [10] deals with double-error and single burst

error correction. However, it doesn’t perform multiple error
correction in general. To date, the algorithms in [13], [15], [16],
and [17] have been the most efficient error correction schemes
for RRNS. In this section, a computational complexity
comparison is given for our algorithm, a variant of the
algorithm in [13], and the algorithm in [17]. The works of [15]
and [16] are closely related to [13]. The error-correction
capabilities of the methods in [14] and [13] are restricted by the
values of moduli in RRNS. In [13], correct decoding takes
place in the presence of e errors if 1log () /e m n k

1(log log),nm m thereby requiring that the moduli be close to
each other. This is in contrast to our work where correct
decoding takes place in the presence of e errors if e ≤ t = (n –
k) / 2. The method in [17] aims at finding a tuple of correct
residues to recover the original integer. The algorithms in [13],
[15], and [16] calculate and subtract the error value using
Euclid’s algorithm and continued fractions involving large
integers. This can be computationally intensive. An idea
intended to achieve error correction, analogous to similar ideas
appearing in [13], [15], and [16], is shown in [17] — it is
equivalent to recovering and checking all possible
combinations of (n – a) residues in the received vector y
assuming that a errors have occurred. The decoding algorithm
in [17], a variant of the decoding algorithm in [13], uses
modular arithmetic. It is simpler to implement.
1) Recover X from the received vector with the CRT.
2) If Y is in the legitimate range, then stop and output X = Y.

Otherwise, go to step 3.

Table 2. Complexity comparison of decoding algorithms.

 Variant of paper [13] Paper [17] Algorithm (Section III) Algorithm (Section IV)

Computation of Y via CRT or MRS N/A

Modular operation n
tC f (r + 1) 0 0

Comparison operation n
tC f (r + 2) log2 |Ut| + 2

log2 (n |Ut|) + 2

Subtraction operation 0 0 2 2

Total complexity 2 n
tC f (2 r + 1) log2 |Ut| + 4

log2 (n |Ut|) + 4

Note: f is an experimental number such that
n

t
r

t

C
f

C

.

Table 3. Complexity comparison of decoding algorithms for (10, 6) & (16, 10) RRNS.

 Variant of paper [13] Paper [17] Algorithm (Section III) Algorithm (Section IV)

Computation of Y via CRT or MRS N/A

Modular operation 45; 560 50; 392 0; 0 0; 0

Comparison operation 45; 560 60; 448 19; 28 23; 32

Subtraction operation 0; 0 0; 0 2; 2 2; 2

Total complexity 90; 1,120 110; 840 21; 30 25; 34

Note: The first & second entry in each box corresponds to (10, 6) & (16, 10) RRNS.

ETRI Journal, Volume 38, Number 2, April 2016 Hanshen Xiao et al. 335
http://dx.doi.org/10.4218/etrij.16.0115.0575

3) Assume a = 1.

4) Compute ,
i

i Z
X Y where Zi, i = 1, 2, … ,

n
n aC is a

product of any (n – a)-dimensional combination of moduli.

5) If Xi is within legitimate range, then output X̂ = Xi. Or, if
,n

n ai C then increment a by 1. If a > t, then go to step 6.

Otherwise, go to step 4.
6) Declare more than t errors and stop.
Thus, the problem of multiple error correction can be solved in
polynomial time in the aforementioned scheme. To remedy the
weakness that a large number of iterations are required to select
correct residues via traversal, MLD is introduced to reduce
nonessential operations in [17]. We omit the details.

The computational complexity comparison between the
proposed algorithms and the algorithms in [13] and [17] is
listed in Table 2. With the exception of the algorithms in
Section IV, these algorithms require computation of integer Y
from the received residues y. This count is not included in
Table 2 explicitly. Due to low complexity requirements for the
dichotomy-based search algorithms, the proposed methods
perform error control up to the error control capability of
RNSCs in a computationally efficient manner. Table 3 lists the
numeric values of the various entries in Table 2 for the (10, 6)
double error–correcting RRNS and (16, 10) triple error–
correcting RRNS described in examples 4 and 5, respectively.
We observe that our algorithms are based on “comparison
operation.” They avoid modular operations or processing of
large integers. This is in contrast to the algorithms in [13] and
[17]. The algorithms presented here are expected to be simpler
and better suited for high-speed, application environments.

VI. Conclusion

In this work, new computationally efficient error-control
algorithms for RRNSs and RNS-PCs, collectively termed
RNSCs, are presented under a unified framework. These
algorithms require “comparison operations” as opposed to
modular operations. This aspect is expected to lead to
improvements in processing time when these algorithms are
implemented in hardware. The proposed algorithms have a
computational complexity of t O(log2 n + log2)m operations.
This is significantly lower than the computational complexity
of existing algorithms. A refinement is described that avoids
modular operations in the first step of decoding algorithms, at a
slight increase in computational complexity of log2 n
comparisons. Two other refinements are described that further
simplify the computations associated with the first step. The
techniques can be extended to non–RNSCs and other scenarios
such as correction of burst errors.

Acknowledgement

The work of H.K. Garg is supported by the Singapore
National Research Foundation under its International Research
Centre @ Singapore Funding Initiative and administered by
the Interactive Digital Media Programme Office at the NUS-
ZJU Sensor-Enhanced Social Media (SeSaMe) Centre. The
work of H. Xiao and J. Hu was supported by Tsinghua
University Initiative Scientific Research Program
(20141081231), the National Natural Science Foundation of
China (under Grant 61371104), and National High Technology
Project of China (under Grant 2011AA010201).

References

[1] A.S. Madhukumar, F. Chin, and A.B. Premkumar, “Incremental

Redundancy and Link Adaptation in Wireless Local Area

Networks Using Residue Number Systems,” Wireless Pers.

Commun., vol. 27, no. 4, Dec. 2003, pp. 321–336.

[2] A.S. Madhukumar and F. Chin, “Enhanced Architecture for

Residue Number System-Based CDMA for High-Rate Data

Transmission,” IEEE Trans. Wireless Commun., vol. 3, no. 5, Oct.

2004, pp. 1363–1368.

[3] A. Sengupta and B. Natarajan, “Performance of Systematic

RRNS Based Space-Time Block Codes with Probability-Aware

Adaptive Demapping,” IEEE Trans. Wireless Commun., vol. 12,

no. 5, May 2013, pp. 2458–2469.

[4] T. Keller, T.H. Liew, and L. Hanzo, “Adaptive Redundant

Residue Number System Coded Multicarrier Modulation,” IEEE

J. Sel. Areas Commun., vol. 18, no. 11, Nov. 2000, pp. 2292–

2301.

[5] B. Zarei, V. Muthukkumarasay, and X.-W. Wu, “A Residual Error

Control Scheme in Single-Hop Wireless Sensor Networks,”

IEEE Int. Conf. Adv. Inf. Netw. Appl., Barcelona, Spain, Mar. 25–

28, 2013, pp. 197–204.

[6] S. Zhang, Y. Zhang, and L.-L. Yang, “Redundant Residue

Number System Based Multicarrier DS-CDMA for Dynamic

Multiple-access in Cognitive Radios,” IEEE Veh. Technol. Conf.,

Yokohama, Japan, May 15–18, 2011, pp. 1–5.

[7] M. Villari et al., “Data Reliability in Multi-provider Cloud Storage

Service with RRNS,” in Adv. Service-Oriented Cloud Comput.,

Berlin, Germany: Springer-Verlag, 2013, pp. 83–93.

[8] F. Barsi and P. Maestrini, “Error Correcting Properties of

Redundant Residue Number Systems,” IEEE Trans. Comput.,

vol. C-22, no. 3, Mar. 1973, pp. 307–315.

[9] H. Krishna, K.-Y. Lin, and J.-D. Sun, “A Coding Theory

Approach to Error Control in Redundant Residue Number

Systems, Part I: Theory and Single Error Correction,” IEEE Trans.

Circuits Syst. II: Analog Digital Signal Process., vol. 39, no. 1,

Jan. 1992, pp. 8–17.

336 Hanshen Xiao et al. ETRI Journal, Volume 38, Number 2, April 2016
http://dx.doi.org/10.4218/etrij.16.0115.0575

[10] J.-D. Sun and H. Krishna, “A Coding Theory Approach to Error

Control in Redundant Residue Number Systems, Part II: Multiple

Error Detection and Correction,” IEEE Trans. Circuits Syst. II:

Analog Digital Signal Process., vol. 39, no. 1, Jan. 1992, pp. 18–

34.

[11] L.-L. Yang and L. Hanzo, “Redundant Residue Number System

Based Error Correction Codes,” IEEE Veh. Technol. Conf.,

Atlantic City, NJ, USA, Oct. 2001, pp. 1472–1476.

[12] L.-L. Yang and L. Hanzo, “Minimum-Distance Decoding of

Redundant Residue Number System Codes,” IEEE Int. Conf.

Commun., Helsinki, Finland, June 2001, pp. 2975–2979.

[13] O. Goldreich, D. Ron, and M. Sudan, “Chinese Remaindering

with Errors,” IEEE Trans. Inf. Theory, vol. 46, no. 4, July 2000,

pp. 1330–1338.

[14] D.M. Mandelbaum, “On a Class of Arithmetic Codes and a

Decoding Algorithm,” IEEE Trans. Inf. Theory, vol. 22, no. 1, Jan.

1976, pp. 85–88.

[15] O. Goldreich, D. Ron, and M. Sudan, “Chinese Remaindering

with Errors,” MIT, Cambridge, USA, Tech. Rep. TR98–062

(revised), Aug. 1999.

[16] O. Goldreich, D. Ron, and M. Sudan, “Chinese Remaindering

with Errors,” ACM Symp. Theory Comput., Atlanta, NJ, USA,

May 1999, pp. 225–234.

[17] V.T. Goh and M.U. Siddiqi, “Multiple Error Detection and

Correction Based on Redundant Residue Number Systems,”

IEEE Trans. Commun., vol. 56, no. 3, Mar. 2008, pp. 325–330.

[18] H. Lo and T. Lin, “Parallel Algorithms for Residue Scaling and

Error Correction in Residue Arithmetic,” Wireless Eng. Technol.,

vol. 4, no. 4, Oct. 2013, pp. 198–213.

[19] H. Krishna et al., “Computational Number Theory and Digital

Signal Processing: Fast Algorithms and Error Control

Techniques,” Boca Raton, FL, USA: CRC Press, 1994.

Hanshen Xiao is currently pursuing his BS

degree in mathematics at Tsinghua University,

Beijing, China. In 2012, he worked as a

research intern for the National Key Lab of

Science and Technology on Communications,

Chengdu, China. In 2015, he was awarded the

Tsinghua Highest Spark Research Fellowship

and was a visiting student at the Department of Computer Science,

Yale University, CT, USA. His research interests include cryptography;

coding theory; and mathematical modeling in signal processing and

numerical calculation.

Hari Krishna Garg received his BS degree in

electrical engineering from the Indian Institute

of Technology, Delhi, India, in 1981 and his

MS and PhD degrees in electrical engineering

from Concordia University, Canada, in 1983

and 1985, respectively. He received his MBA

degree in international finance from Syracuse

University, NY, USA, in 1995. From 1985 to 1995, he was with the

Department of Electrical & Computer Engineering, Syracuse

University. He joined the Department of Electrical & Computer

Engineering, National University of Singapore, in 1995. His research

interests include wireless communications from physical to application

layers. He also engages in enterprise activity as his passion. Thus far,

he has founded or co-founded four companies.

Jianhao Hu received his BE and PhD degrees

in communication systems from the University

of Electronic Science and Technology of China

(UESTC), Chengdu, China, in 1993 and 1999,

respectively. He joined the City University of

Hong Kong, Kowloon Tong, China, in 1999 as

a postdoctoral researcher. From 2000 to 2004,

he served as a senior system engineer at the 3G Research Center of the

University of Hong Kong. He has been a professor of the National Key

Lab., UESTC, since 2005. His research interests include high-speed

DSP technology with VLSI, NoC, and software radio.

Guoqiang Xiao received his PhD degree

in signal and information processing from

the University of Electronic Science and

Technology of China (UESTC), Chengdu,

China and his BS degree in radio technology

from Chongqing University, China, in 1999 and

1986, respectively. Since 1986, he has been

with the College of Computer and Information Science, Southwest

University, Chongqing, China, where he is currently a professor. From

2001 to 2004, he was with the Department of Electrical & Electronic

Engineering, University of Hong Kong, as a postdoctoral researcher.

His research interests include image processing, pattern recognition,

neural networks, and wireless network communication.

