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We propose and describe new error control algorithms 
for redundant residue number systems (RRNSs) and 
residue number system product codes. These algorithms 
employ search techniques for obtaining error values from 
within a set of values (that contains all possible error 
values). For a given RRNS, the error control algorithms 
have a computational complexity of t · O(log2 n + log2 m ) 
comparison operations, where t denotes the error 
correcting capability, n denotes the number of moduli, and 
m  denotes the geometric average of moduli. These 
algorithms avoid most modular operations. We describe a 
refinement to the proposed algorithms that further avoids 
the modular operation required in their respective first 
steps, with an increase of log2 n to their computational 
complexity. The new algorithms provide significant 
computational advantages over existing methods. 
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I. Introduction 

Error control techniques play an important role in the 
reliability of signal transmission in communication systems. 
This is due to their capability to enhance the robustness of 
information transmission in noisy environments.  

Residue number systems (RNSs) are used to express a 
computation in a large integer ring as a direct sum of 
computations in a number of smaller integer rings. These 
computations can be carried out in parallel.  

The Chinese remainder theorem (CRT) forms a basis for an 
RNS. Redundant residue number systems (RRNSs) have 
recently been applied to communication systems, including 
wireless local area network (WLAN) [1], code division 
multiple access (CDMA) [2], space–time block codes [3], 
multicarrier modulation [4], wireless sensor networks [5], and 
cognitive radio [6]. Application of RRNSs to provide reliability 
in cloud storage services is described in [7].  

In 1976, the concepts of legitimate range and illegitimate 
range were introduced [8], an important breakthrough in the 
field of RRNS-based error control.  

One of the earliest schemes for single-burst errors and 
double errors was developed in 1992. It computes syndromes 
of the digits in a received vector and compares them with some 
observations [9], [10].  

Knowledge of Hamming weight and minimum distance was 
used in detecting and correcting error, in [9] and [10]. Yang and 
Hanzo [11] used base extension (BEX) to achieve error 
correction in wireless channels suffering from low reliability. 
Their method requires decoding and encoding operations for 
each BEX process, and recovers digits by the CRT. In addition, 
Yang and Hanzo threw new light on the problem with the 
theory of minimum distance decoding [12]. 
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An algorithm was proposed in [13] to recover directly the 
original digits from a received vector based on combinations of 
residues. The method used in [13] is based on continued 
fractions and Euclid’s algorithm. It is a variant of the multiple 
error correction algorithm in [14]. The work of [13] and other 
works by the same authors related to [13] can be found in [15] 
and [16]. Relying on [12], Goldreich and others extended [13] 
with theories of maximum likelihood decoding (MLD) to 
determine error-location residues with fewer trials [17]. More 
recent work on scaling and error correction can also be found 
in [18]. 

The major contributions of this work are given below. In 
what follows, RRNSs and RNS-PCs are collectively termed as 
RNS codes (RNSCs). First, a unified mathematical framework 
for RNSCs is developed. Second, new computationally 
efficient algorithms for error control in an RNSC are described. 
Two cases are considered: (a) pure error correction and (b) 
simultaneous error correction and error detection. In both cases, 
the algorithms decode correctly if the number of errors is less 
than or equal to the error control capability of the RNSC. These 
algorithms provide significant computational savings in 
comparison to existing works. The methods described here are 
based on search techniques for use within an ordered set. 
Various refinements are described that simplify step 1 of these 
algorithms. The computational complexity of the proposed 
algorithms is t · O(log2 n + log2 m ). For a given RNSC, t is the 
error correcting capability, n is the number of moduli, and m  

is their geometric average. In comparison, the computational 

complexity of existing works is (i)  2O (log ) ,ab b where a 

is a constant and  21
1 log

n

ii
b m


      in [13], [15], [16], 

and (ii) O(nt) in [17]. 
The algorithms presented in this paper require fewer 

operations by comparison. In addition, they avoid most 
modular computations. Consequently, the proposed algorithms 
are expected to be simpler to implement and better suited   
for high-speed application environments. A preliminary 
analysis of hardware implementation supports this assertion. 

This paper is organized as follows. Section II provides a  
brief description of the CRT and coding theory for RNSs. 
Sections III and IV are on the key contributions of this work. 
Error control algorithms are obtained in Section III and 
examples are presented to illustrate these algorithms. A 
refinement to the error control algorithms in Section III is 
described in Section IV — the refinement avoids modular 
operations required in the first step of each of the proposed 
algorithms. The refinement results in a slight increase in 
complexity. Further refinements are also described that 
simplify computations, once again, in the first step of each of 
the proposed algorithms. Computational comparisons with 

existing algorithms are presented in Section V. Section VI 
concludes this work. 

II. Mathematical Preliminaries 

1. RNS 

An RNS is a finite integer ring (Z(MK)) defined by k 
relatively co-prime moduli, m1, m2, … , mk, arranged in 
ascending order (without loss of generality). The range of the 
RNS is given by [0, MK), where 

1

.
k

K i
i

M m


                  (1) 

An integer X  [0, MK) in the given RNS is represented by a 
vector, x, of length k, via the modular computation 

  X  x = (x1 x2, … , xk),               (2) 
where  

  xi  X (mod mi)    (i = 1, 2, … , k).         (3) 

RNSs express a computation in a large integer ring as a 
direct sum of computations in a number of smaller integer 
rings; the computations can be carried out in parallel. For 
instance, multiplication of integers A and B in Z(MK) is 
computed as k parallel multiplications ai·bi (mod mi), i =     
1, … , k. 

2. Permutation 

Given a set of integers S = {s1, s2, … , s} of cardinality , 

we define a permutation of S as a rearrangement of the 

elements in S in a different order. When S is an RNS Z(MK), 

one such permutation is S = {P  s1, P  s2, … , P  s}. Here, P 

is an integer, and multiplication P  sa is conducted modulo MK. 

Not all values of P lead to a permutation. The necessary and 

sufficient condition is that P and MK must be co-prime; that is, 

gcd(P, MK) = 1. For an RNS Z (MK), a permutation gives rise to 

a one-to-one mapping, represented by 

X  P·X  (mod MK).               (4) 

As X takes values in the set {0, 1, … , MK – 1}, X also takes 
values in the same set, though in a different order. Any P such 
that gcd(P, MK) = 1 can be used. Such integers always exist. In 
fact, there are (MK) such values in the range (0, MK); (M) 
being the Euler totient function of M. For any given 
permutation, the following two properties hold: 
▪ X = 0 if and only if X = 0. 
▪ ix  X (mod mi) = pi  xi (mod mi), pi  P (mod mi), i = 1, 2, 

… , k. 
We are interested in values of P that are associated with CRT 
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computations and RNSCs. In addition, we show that the use of 
permuted residues simplify decoding algorithms in some cases. 

3. CRT-I 

Given x, computation of X, 0 ≤ X < MK, can be done via the 
CRT; this can be stated as follows: 
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The scalar ai, is computed a-priori by solving the congruence 
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   (i = 1, 2, … , k).     (6) 

It is clear from (6) that 

gcd(ai, mi) = 1,  (i = 1, 2, … , k).         (7) 

The CRT computation in (5) can be performed in two steps: 
Step 1: Compute the permuted residues  

(mod )i i i ix a x m     (i = 1, 2, … , k).       (8) 

Step 2: Compute X as 
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Computation of X from x necessarily involves large integers 
as the dynamic range of RNS is large. For the integers ai (i = 1, 
2, … , k) in (5), consider the integer T (0 < T < MK) such that 

  T  ai (mod mi)  (i = 1, 2, … , k).      (10) 

The integer T can be obtained using the CRT. Stated explicitly, 
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It follows from (7) and (10) that 

gcd(T, MK) = 1.              (12) 

A. CRT-II: Using Permuted Residues  

Based on (8), we may also use permuted residues  

 1 2 , ... , ,kx x x   x                 (13) 

instead of x = (x1 x2 ··· xk) in residue arithmetic. In such a case, 
X is obtained from (9) in a direct manner. It is clear from (5), 
(8), and (12) that X  x = (x1 x2, … , xk) and X   

1 2( , ... , )kx x x   x  are related via the permutation 

 X = T  X (mod MK).              (14) 

Given X, X can be recovered as 

 X  T–1  X (mod MK).            (15) 

A unique T–1 (mod MK) always exists due to (12). 

B. CRT-III Computation with Permutation  

Given the CRT in (5), we can also write 
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 .        (16) 

This provides an alternative expression and a way to compute 
X from its residues in the given RNS. The CRT computation 
based on (16) can be performed in two steps: 
Step 1: Compute  
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                 (17) 

Step 2: Compute X as 

 X  T  X (mod MK).             (18) 

The three formulations of the CRT, enumerated as CRT-I, 
CRT-II, and CRT-III, are equivalent and have their own 
computational features, thus making each one uniquely suitable 
for a certain computational environment (as shown in 
refinement 3 in Section IV). In essence, T establishes a 
permutation between (i) X and X via (15), and (ii) X and X via 
(18). We note that for a given RNS, T is fixed and needs to be 
computed once only. Finally, a permutation in an RNS can be 
carried out via any P such that gcd(P, MK) = 1. A permutation 
is used to establish decoding algorithms for an RNS-PC. 

4. Mixed Radix System (MRS) 

An MRS can be used to compute X from its residues x. In an 
MRS, X is represented as follows: 

X = y1 + y2  m1 +    + yn  (m1  m2, … , mk–1). 

The mixed radix digits satisfy 0 ≤ yi < mi. They are computed 
from x using RNS-to-MRS conversion algorithms [19].  

In our work, integer X can be computed from its residues 
using either the CRT or the MRS. Such a computation 

 

Table 1. Permutations and CRT computations. 

X x X x X x 

1 (1 1) 2 (2 2) 8 (2 3) 

2 (2 2) 4 (1 4) 1 (1 1) 

3 (0 3) 6 (0 1) 9 (0 4) 

4 (1 4) 8 (2 3) 2 (2 2) 

13 (1 3) 11 (2 1) 14 (2 4) 
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constitutes the first step in the new decoding algorithms. We 
also use the CRT to establish mathematical aspects of the new 
decoding algorithms. The choice of CRT versus MRS for an 
actual computation rests with the system designer. 

Example 1. Consider an RNS defined by residues m1 = 3 and 

m2 = 5. Then, we have MK = m1  m2 = 15, and X is an integer in 

the range (0, 15). The values a1 and a2 needed for the CRT are 

obtained by solving congruences a1  5  1 (mod 3) and a2  3  

1 (mod 5). This results in a1 = a2 = 2. Using the CRT on a1 and 

a2, we get T = 2 and T–1 = 8 (mod 15). Selected integers X, X, 
and X for the permutations in (15) and (18) and their residues 

are given in Table 1. 

5. RRNS 

An RRNS is obtained by appending (n – k) additional 

relatively co-prime moduli, mk+1, … , mn, to an RNS defined by 

moduli m1, m2, … , mk. We further assume that moduli m1, m2, 

… , mk, mk+1, … , mn are arranged in an ascending order. An 

RRNS is a (n, k) code with redundancy given by 

1

n

R i
i k

M m
 

  .               (19) 

An integer X  [0, MK) in the given RNS is represented by a 

codeword, x, of length n, via modular computations as follows: 

X  x = (x1  x2, … , xk  xk+1, … , xn),          (20) 
where  

xi  X (mod mi)  (i = 1, 2, ... , n).        (21) 

The k residues (x1 x2, … , xk) constitute the information digits, 

and the (n – k) residues (xk+1, … , xn) the parity digits. Let 

MN = MK  MR.               (22) 

Given a vector, a, the Hamming weight of a, denoted by 

H(a), is the number of non-zero elements in a. The Hamming 

distance between two vectors is the number of places in which 

the two vectors differ. The Hamming distance between two 

codewords is same as the Hamming weight of another 

codeword. The Hamming weight of any non-zero codeword in 

an RRNS is at least d = n – k + 1. An RRNS is a maximum 

distance separable (MDS) code having minimum distance d. 

These properties follow even though RRNSs are nonlinear [19].  

Example 2. Consider a (4, 2) RRNS defined by (m1 m2 m3 

m4) = (11 13 14 15). The legitimate range is (0, 143), MR = 210. 

This is a minimum distance 3 RRNS. Given an integer X = 25 

 (0, 143), we have x = (3 12 11 10). If we extend this RRNS 

with a third redundant modulus, say m5 = 17, then we get a   

(5, 2) minimum distance 4 RRNS. 

6. RNS-PC 

An RNS-PC is defined by n moduli (m1 m2, … , mn) such 
that all codewords when converted to equivalent integer form 
are divisible by a code-generator integer G, gcd(G, MN) = 1. 
Thus, for an integer X in the legitimate range (0, )KM , MK = 
MN/G + 1, the corresponding codeword x is obtained as G  X 
 x =  (g1x1 g2x2, … , gnxn), where multiplications are 
conducted mod respective moduli. Here,  is the well-known 
floor function. The minimum distance for an RNS-PC is d, if  

and only if G satisfies 
1

1 1

d d

n i n i
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   . RNS-PCs can 

be studied as an equivalent of cyclic codes over finite fields.  
Example 3. Consider an RNS-PC defined by (m1 m2 m3 m4) = 

(13 16 17 19). For a minimum distance 3 RNS-PC, we have 
m4m3m2 > G  m4m3 or 5,168 > G  323. Choosing G = 327, 
we have (0, 206) as the legitimate range for this RNS-PC. 

III. Unified Framework and Algorithms for Error 
Control in RNS  

Together, RRNSs and RNS-PCs will be referred to as 
RNSCs. A minimum distance d RNSC can correct up to t 
residue errors (also called its error-correcting capability), where 

 1 2t d    .               (23) 

A code that simultaneously corrects up to  residues and 
detects up to  ( > ) residues in error has minimum distance  

 d =  +  + 1.                 (24) 

It is clear that the (4, 2) RNSC in example 2 can correct a 
single error, while the (5, 2) RNSC can simultaneously correct 
single errors and detect double errors. In the following, we 
propose new algorithms for error control for RNSCs.  

1. Error Phenomenon 

For a transmitted codeword x, an additive error, ei, (ei ≠ 0) in 
the ith residue results in a received residue vector, y. 

y = x + e,                  (25) 

where 
 yi  xi + ei (mod mi)  (i = 1, 2, … , n).       (26) 

For an error, both its location and value are unknown. The 
Hamming weight of e, H(e), is the number of errors in y. Using 
a triangular inequality, we have H(y) ≥ H(x) – H(e), or  

 H(y) ≥ d – H(e).               (27) 

The error model in (25) and (26) is adopted all throughout 
this work for various error control algorithms.  

The first step in error control algorithms in RNSCs being 
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described here is as follows. Given y, compute Y from y and 
check if it is in legitimate range [0, MK) for the given RNSC. 
Thus far, the first step in decoding of an RNS-PC has been 
computation of Y from y and checking if G | Y [19]. In the 
following, we first unify step 1 for RRNS and RNS-PC leading 
to a unified framework for error control in RNSCs. Error 
control algorithms for RNSCs is then presented.  

2. RRNS 

Consider an (n, k) RRNS with H(x) ≥ d, x ≠ 0, and a 
received residue vector y in (25).  
Lemma 1. If up to t errors occur, then 

1

0
n t
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i
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   ,             (28) 

0 ≤ X + E < MN,                (29) 

where E is the error integer corresponding to residue vector e. 
Proof. If H(e) = a, then e has a non-zero and (n – a) zero 
residues. Let e be non-zero in locations I = (i1, i2, … , ia) and 0 
in all others. If a residue is 0, then E is a multiple of 
corresponding modulus. Thus, E is a multiple of all moduli mi, 
i = 1, … , n, that do not belong to I. The largest value of E such 
that it is non-zero in locations I is given by 
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The largest value of E implies that the moduli “not belonging” 
to set I is the (n – a) smallest moduli. Hence, 
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Again, the largest value of E is obtained when a is as large as 
possible. We note that Lemma 1 is applicable if a ≤ t. Settin   
a = t leads to (28). Equation (29) is obtained by adding MK to 

both sides of (28) and noting that 
1 1

.
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    ■ 

Using Lemma 1, we can express (25) in integer form as 

Y = X + E (mod MN) = X + E.          (30) 

Here, X has residue vector x and E has residue vector e having 
0’s in all locations except for residue positions where errors 
have occurred. The first step in the error control algorithms for 
RRNSs being described here is to compute Y from y. This can 

be done using either the CRT or the MRS.  

3. RNS-PC 

Expressing (25) in integer form for RNS-PC, we have Y =  
G  X + E (mod MN). To test whether Y is a codeword or not, 
the existing algorithms for RNS-PC compute Y first and then 
test if G | Y [19]. We now merge the two steps to compute  

Y1  G–1Y (mod MN) = X + G–1  E (mod MN ) 
= X + F (mod MN),                          (31) 

where F = G–1  E (mod MN). Computationally, 
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where the permuted residues iy  are given by 
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       (33) 

Thus, F is a permuted version of E via (G–1 (mod MN)) and, 

Y1 = X + F.                 (34) 

Two key properties of such a computation are as follows:  
▪ P1: H(f) = H(e). 
▪ P2: Y is a codeword if and only if Y1 is a legitimate integer; 

that is, 0 ≤ Y1 < MK. 

Writing F = G–1E (mod MN) in residue form, f = G–1e or 

 1 mod ,i i i if g e m   gi  G (mod mi), i = 1, 2, … , n. Since 

gcd(gi, mi) = 1, fi = 0 if and only if ei = 0. This establishes P1, 

thereby showing that if e is a correctable/detectable error vector, 
then so is f, and vice-versa. As P1 is valid, (28) holds for F. P2 

follows from (28) and (31) through (34). P1 and P2 taken with 

Lemma 1 further lead to Y1 = X + F, an expression for RNS-
PCs that is equivalent to (30) for RRNSs. 

In essence, divisibility of Y by G is now replaced by testing 
for Y1 being in legitimate range [0, MK). This unifies error 
control methods for RRNSs and RNS-PCs. In an RRNS, given 
y = x + e, we compute Y from y with Y = X + E. In an RNS-PC, 
given y = G  x + e, we compute Y1 from y with Y1 = X + F and 
H(f) = H(e). Moving forward, we denote Y1 by Y and F by E in 
our description of error control algorithms within the unified 
framework for RNSCs. Again, the computation of Y from its 
residues can be carried out using either the CRT or the MRS.   

Given Y, the task of any decoding algorithm is to estimate  
X and E, denoted by X̂  and ˆ ,E  respectively, such that Y = 
X̂ + ˆ.E  The decoding algorithm decodes “correctly” if X = 
ˆ .X  Correct decoding must take place if the number of errors 

in y does not exceed the error-correcting capability of the 
RNSC. The following two cases follow from this:  
▪ Case I: When used purely for error correction, correct 
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decoding must take place if H(e) ≤ t. 
▪ Case II: When used for simultaneous error correction and 

detection, correct decoding takes place if H(e) ≤ . Further, 
the decoding algorithm detects errors if  < H(e) ≤ . 
Some general properties of an RNSC are as follows. Every 

legitimate integer X and the corresponding codeword x satisfy 

0 ≤ X < MK,                (35) 

H(x) ≥ d  (x ≠ 0).              (36) 

Hence an arbitrary integer R, such that H(r) < d, is an 
illegitimate integer; that is, MK ≤ R < MN. It follows that if there 
are a errors in y, then H(e) = a and H(y) ≥ d – a.  
Lemma 2. If there are at most (d – 1) errors in y (that is, H(e) < 
d), then Y is an illegitimate integer. 
Proof. All codewords differ in at least d places. As x and y 
differ in (d – 1) places or less, y cannot be a codeword.     ■ 

For an RNSC, we construct a set Vl, referred to as an     
“l-error-set,” which contains all possible integers E such that 
H(e) = l. Thus, we have 

Vl = {E, e: H(e) = l}.            (37) 

Based on Vl, we construct a set Ub, referred to as an “error-set,” 
which contains all possible integers E such that 1 ≤ H(e) ≤ b. 
Mathematically, we have 

Ub = {E, e: 1 ≤ H(e) ≤ b} = V1  V2 , … ,  Vb.   (38) 

We further assume that the elements in Ub are listed in an 
ascending order. It is clear that all integers in Vl and hence Ub 
are illegitimate as long as b < d. The error-set Ub is computed 
only once and then stored for use in the decoding algorithm. To 
reinforce the unified framework for error control in RNSCs, we 
note that given the permutation F  P  E (mod MN), the 
elements in the set Vl are the same for both F and E as H(f) = 
H(e). Hence, under the condition that the same moduli are used 
for both, the sets Ub for an RRNS and an RNS-PC are identical. 
The only difference is that the error vectors for such an RRNS 
and RNS-PC are associated with their integer representation 
via the permutation P  G–1 (mod MN). 

The cardinality of Ub (that is, the number of error vectors e 
having a Hamming weight in the range 0 < H(e) ≤ b) can be 
approximated by a polynomial in n of degree b as follows: 
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We compute m  as the geometric mean of all the residues,  
1
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Here, nCr = n!/[r!(n – r)!] is the combinatorial function. The 
expression in (39) is exact if moduli are equal. Since they are 

not, we take geometric mean to estimate the cardinality of Ub. 
Example 4. Consider a (4, 2) RRNS defined by (m1 m2 m3 

m4) = (2 3 5 7). Let b = t = 1. The integers E included in U1 
along with their respective 4-dimensional vectors are 105  (1 
0 0 0), 70  (0 1 0 0), 140  (0 2 0 0), 126  (0 0 1 0), 42  
(0 0 2 0), 168  (0 0 3 0), 84  (0 0 4 0), 120  (0 0 0 1), 30 
 (0 0 0 2), 150  (0 0 0 3), 60  (0 0 0 4), 180  (0 0 0 5), 
and 90  (0 0 0 6). The error-set including the aforementioned 
integers sorted in ascending order is U1 = {30, 42, 60, 70, 84, 
90, 105, 120, 126, 140, 150, 168, 180}. In this case, U1 = 13. 
The approximated values are m  = 4 and U1  12 as per (39). 
Similarly, U2 = 69, while the approximate value is U2  67. 

Example 5. Consider an RNS-PC defined by the same 
residues as in example 4 with G = 37, G–1 = 193. Let b = t = 1. 
All the integers E included in U1 along with their respective   
4-dimensional vectors obtained via the permutation P      
G–1 (mod MN) are 105  (1 0 0 0), 70  (0 1 0 0), 140  (0 2 
0 0), 126  (0 0 3 0), 42  (0 0 1 0), 168  (0 0 4 0), 84  
(0 0 2 0), 120  (0 0 0 4), 30  (0 0 0 1), 150  (0 0 0 5), 60 
 (0 0 0 2), 180  (0 0 0 6), and 90  (0 0 0 3). The error-set 
including the aforementioned integers sorted in ascending 
order is the same as in example 4. 

We now describe a decoding algorithm for the two cases, 
separately, though the analysis is similar.  

4. Case I   

Error correction up to t errors; 0 < H(e) ≤ t. For correcting up 
to t errors, we create the error set Ut. Given (19) and (22) and 
the ensuing discussion, it is clear that Y and X are illegitimate 
and legitimate integers, respectively, Y = X + E (E  Ut). In 
addition, E < Y. The following theorem plays a key role in the 
formulation of new decoding algorithms.  
Theorem 1. Given Y = X + E, X and E are unique for H(e) ≤ t.  
Proof. If these values are not unique, then there are at least two 
sets (X1, E1) and (X2, E2) such that  

 Y = X1 + E1 = X2 + E2.            (41) 

Without any loss in generality, let X1 > X2. Rearranging (41),  

 X1 – X2 = E2 – E1.               (42) 

Let X3 = X1 – X2 and E3 = E2 – E1. Thus, X3 is legitimate with 
H(x3) ≥ 2 t + 1, while H(e3) ≤ H(e2) + H(e1) ≤ t + t = 2 t. Clearly, 
(41) is not possible, as the Hamming weight of the left side of 
(42) can never equal the Hamming weight of the right side of 
(42).                                            ■  

Theorem 1 leads to the following new decoding algorithms. 
Decoding Algorithm 1. Given Y, test if E = 0. If not, then find 
the largest integer Ê  in Ut such that Ê ≤ Y. Thus, the 
decoding algorithm finds Ê  as “the largest integer in Ut less 
than or equal to Y.” The corresponding X̂  is computed as 
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X̂ = Y – Ê .                (43) 

This analysis also leads us to conclude that the difference 
between any two arbitrarily selected elements in Ut is at least 
MK. Finally, noting that 0 ≤ X < MK, we have  

Y – MK < E ≤ Y.               (44) 

A flow chart for new decoding algorithm 1 is shown in   
Fig. 1. The bulk of the complexity consists in searching Ut to 

determine Ê . There are numerous binary tree–based search 

algorithms known in the literature that have a complexity of 
O(log2 A), where A is the cardinality of the ordered set A. In 

essence, these algorithms are based on the “divide-and-

conquer” technique. Via (39), |Ut| can be approximated by a 
polynomial of the kind |Ut|  .t ta n m   Hence, the 

complexity of decoding algorithm 1 is t  O(log2 n + log2 m ). 

The error-set Ut is straightforward to obtain for a given RNSC, 
as is shown in examples 4 and 5. 

Example 6. Consider the same RRNS as in example 4. Let  

X = 3, x = (1 0 3 3), and an error be introduced in the second 

residue to obtain y = (1 1 3 3). Therefore, Y = 73, Y – MK = 67. 

Thus, we need to search in U1 to find E within (67, 73). There 

are 13 elements in U1 as listed in example 4. Let us denote 

them by U1(i), 1 ≤ i ≤ 13. First, compare U1(7) = 105 with 73 to 

get 105 > 73. Since 105 > Y, we have E as one of {U1(1), … , 

U1(6)}. Second, compare U1(4) = 70 with 73 to get 70 < 73, 

thus further narrowing E as one of {U1(4), … , U1(6)}. Third, 

compare U1(5) = 84 with 73 to get 84 > 73. This eliminates 

U1(5) and U1(6), Ê = U1(4) = 70 with X̂ = Y – Ê = 3. 
Following RNS-PC in example 5, let X = 3 with the 

codeword G  X  (1 0 1 6). Let an error be introduced in the 
second residue to obtain y = (1 1 1 6). Therefore, in step 1, we 
compute the permuted version of y using (G–1 (mod MN)) (193 
(mod 210)) to obtain Y = 73, Y – MK = 67. The rest of the steps 
are identical to the steps for RRNS.   

Example 7. Consider a double error correcting (10, 6) RRNS 
defined by (m1, … , m10) = (23 25 27 29 31 32 67 71 73 79). In 
this case, t = 2 and |U2| = 87,899. 

5. Case II  

Simultaneous error correction up to  errors and detection up 
to  errors; 0 < H(e) ≤ ,  < . For correcting up to  errors, 
we create the error-set U. Based on a similar analysis as in 
Case I, the new decoding algorithm for Case II is as follows. 

Decoding algorithm 2. Given Y, test if E = 0. If not, then  
find the largest integer Ê  in U such that Ê  ≤ Y. The 
corresponding X̂  then is computed as X̂ = Y – Ê . Theorem 1 
also holds in this case. We note that Case II requires fewer 

 

Fig. 1. Flow chart for decoding algorithm for case I. 

Receive residues y

Compute Y via 
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errors in Y” STOP

N 

 
 
comparisons as |U| < |Ut| for  < t. The error control algorithm 
for simultaneous correction of up to  and detection of up to  
errors (d =  +  + 1,  < ) is almost the same as the one 
described in Fig. 1 with Ut replaced by U.  

Example 8. Consider a (16, 10) RRNS defined by (m1, … , 
m16) = (23 29 31 32 35 37 39 41 43 47 53 59 61 67 71 73). In 
this case, we can use U3 for correcting three errors, |U3| = 
51,159,743, or U2 for simultaneous correction of up to two and 
detection of up to four errors, |U2| = 245,231. 

Example 9. Consider the same RRNS as in example 7. Let 
us use it for simultaneous correction of one error and detection 
of up to three errors. Here, MK = 446,623,200, |U1| = 447. Let  
X = 15, x = (15, … , 15), and two errors be introduced to obtain  
y = (16 15, … , 15 75). First, Y = 2,285,962,767,813,615. Ten 
comparisons are needed in the decoding algorithm.  
▪ 1: U1(224) = 6,203,792,762,208,000 > Y, 
▪ 2: U1(112) = 3,161,933,085,254,400 > Y, 
▪ 3: U1(56) = 1,645,856,960,421,600 < Y, 
▪ 4: U1(84) = 2,377,348,942,831,200 < Y, 
▪ 5: U1(70) = 2,014,108,061,155,200 < Y, 
▪ 6: U1(77) = 2,194,475,947,228,800 < Y, 
▪ 7: U1(81) = 2,326,422,285,828,000 > Y, 
▪ 8: U1(79) = 2,268,979,760,252,000 < Y, 
▪ 9: U1(80) = 229,734,2007,255,150 > Y, 
▪ 10: Ê = U1(79) = 2,268,979,760,252,000, X̂ = Y – Ê = 

16,983,007,561,615 > MK. 
Thus, “uncorrectable errors in Y” is declared.  
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IV. Further Refinements 

1. Refinement 1 

One may reason that computation of Y in the first step of the 
new decoding algorithms described here still requires a 
modular operation (mod MN) if the CRT is used to compute Y. 
We now describe a refinement, whereby such an operation 
may be avoided at an increase of log2 n to the number of 
comparisons. The first step in the decoding algorithms is the 
computation of Y, which can be carried out using either the 
CRT or the MRS. Mathematically, Y can be represented by 

 
1

mod ,
n

N
i N

i i

M
Y y M

m

 
  
 

           (45) 

where (mod )i i i iy y a m   , i = 1, 2, … , n. Given y, the 

computation in (45) can equivalently be expressed as 

 
1

,
n

N
i

i i

M
Y y

m

 
   

 
              (46) 

  mod NY Y M .             (47) 

To avoid the modular operation in (47), one may compute Y in 
(46) instead of Y in (47). Recalling (30), we may write Y as 

Y = Y +   MN = X + E +   MN,             (48) 

where  is an unknown that satisfies 0 ≤  < n. Based on (48), 
we construct n sets, Ai, i = 0, … , n – 1, as follows:  

Ai = {all values of X + E + i  MN; 0 ≤ X <MK, H(e) ≤ t}. 
 (49) 

Since 0 < X + E < MN for H(x) ≥ 2t + 1 and H(e) ≤ t, these sets 
are disjoint. We create a super error-set 

S
bU , an n-fold replica 

of the previously described error-set Ub, as follows: 

  S , , , 1 ; : ( )l N NE E M E n M H l      V e e , (50) 

S S S S
1 2 , ... ,b b   U V V V .            (51) 

The elements of S
bU  are listed in an ascending order. We also 

have | S
bU | = n  |Ub|. Based on this formulation of 

S
bU , the 

decoding algorithms can now be described as follows: 
▪ Step 1: Compute Y using (46). When E = 0, X  one of n 

intervals, ith interval = [i  MN, i  MN + MK], i = 0, … , n – 1. 

▪ Decoding algorithm 1: Given Y, test if E = 0. If not, find the 

largest integer Ê  in S
tU  such that Ê ≤ Y. 

▪ Decoding algorithm 2: Given Y, test if E = 0. If not, find the 

largest integer Ê  in 
S
U  such that Ê ≤ Y. 

Each iteration in the search process narrows the number of 

possible values of Ê  by a factor of two. Here, | S
bU | = n  |Ub|. 

Hence, log2 n additional comparisons reduce the search to its 
original size of |Ub|. 

 

Fig. 2. Modified flow chart for decoding algorithm for case I.
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The search scheme may be further improved in hardware 

implementation by arranging elements in 
S
bU  into different 

subsets, where the arranged elements have the same bit-length 

in each subset. In this case, the decoding algorithms carry out a 

bit-length check of Y, and then implement the search scheme 

in the subset in which numbers have the same bit-length as Y.  

2. Refinement 2 

If it is not required to isolate the case of no error (Y = X, E = 
0; y = x, e = 0) from the case of one or more errors (Y ≠ X, E ≠ 
0; y ≠ x, e ≠ 0) at the receiver, then Ub is obtained as 

Ub = {E, e: 0 ≤ H(e) ≤ b} = V0  V1 , … ,  Vb.  (52) 

Similarly, S
bU  is constructed as: 

S S S S
0 1 , ... ,b b   U V V V .            (53) 

In this case, no comparisons are required once Y in (30) or Y in 

(46) is computed; furthermore, a search is performed even 

when E = 0 (e = 0). A flow chart for decoding algorithm 1 
incorporating these refinements is shown in Fig. 2. In this flow 

chart, Ut can be replaced by U to obtain the decoding 

algorithm for simultaneously correcting  and detecting  ( < 
) errors. Finally, Y and Ut in Fig. 2 can be replaced by Y and 

S
tU  in (53), respectively, to obtain the decoding algorithm for 

correcting up to t errors. In Fig. 2, Ut is replaced by S
U  to 

obtain the decoding algorithm for simultaneously correcting  

and detecting  ( < ) errors. In these cases, Y in Fig. 2 is 

computed using (46) instead of the CRT or the MRS. As a 
result, decoding algorithms incorporating these refinements 
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avoid all modular operations in Step 1. 

3. Refinement 3 

The CRT computation of Y in RRNS can be simplified by 
computing and transmitting permuted residues x instead of x, 

(mod )i i i ix a x m   , i = 1, 2, … , n. The arithmetic remains 

the same. In this case, y = x + e, and Y is calculated as 

 
1 1

mod
n n

N N
i i N

i ii i

M M
Y x e M

m m 

   
      
   

  ,    (54) 

leading to Y = X + T–1E (mod MN). There is no other change  
in the error control algorithms. This saves n modular 
multiplications required to compute x from x at the receiving 
end.  

The framework described here can also be used for error 
control in other scenarios. For instance, if we are interested in 
controlling burst errors, then Ub is the error-set corresponding 
to all correctable burst errors of up to length b. Finally, the error 
correction/list decoding problem mentioned in page 1,332 of  
[13] requires computation of all codewords that differ from y in 
up to e places, e > t. This can also be done by using the 
methodology described here. In such a case, the decoding 
algorithm uses error-set Ue instead of Ut and finds codewords 
within MK of Y. There may be multiple solutions as e > t.   

V. Computational Complexity Comparisons 

The work of [10] deals with double-error and single burst 
 

error correction. However, it doesn’t perform multiple error 
correction in general. To date, the algorithms in [13], [15], [16], 
and [17] have been the most efficient error correction schemes 
for RRNS. In this section, a computational complexity 
comparison is given for our algorithm, a variant of the 
algorithm in [13], and the algorithm in [17]. The works of [15] 
and [16] are closely related to [13]. The error-correction 
capabilities of the methods in [14] and [13] are restricted by the 
values of moduli in RRNS. In [13], correct decoding takes  
place in the presence of e errors if 1log ( ) /e m n k   

1(log log ),nm m  thereby requiring that the moduli be close to 
each other. This is in contrast to our work where correct 
decoding takes place in the presence of e errors if e ≤ t = (n – 
k) / 2. The method in [17] aims at finding a tuple of correct 
residues to recover the original integer. The algorithms in [13], 
[15], and [16] calculate and subtract the error value using 
Euclid’s algorithm and continued fractions involving large 
integers. This can be computationally intensive. An idea 
intended to achieve error correction, analogous to similar ideas 
appearing in [13], [15], and [16], is shown in [17] — it is 
equivalent to recovering and checking all possible 
combinations of (n – a) residues in the received vector y 
assuming that a errors have occurred. The decoding algorithm 
in [17], a variant of the decoding algorithm in [13], uses 
modular arithmetic. It is simpler to implement.  
1) Recover X from the received vector with the CRT. 
2) If Y is in the legitimate range, then stop and output X = Y. 

Otherwise, go to step 3. 
 

Table 2. Complexity comparison of decoding algorithms. 

 Variant of paper [13] Paper [17] Algorithm (Section III) Algorithm (Section IV) 

Computation of Y via CRT or MRS    N/A 

Modular operation n
tC  f  (r + 1) 0 0 

Comparison operation n
tC  f  (r + 2) log2 |Ut| + 2

 
log2 (n  |Ut|) + 2

 
Subtraction operation 0 0 2 2 

Total complexity 2  n
tC  f  (2  r + 1) log2 |Ut| + 4

 
log2 (n  |Ut|) + 4

 

Note: f is an experimental number such that 
n

t
r

t

C
f

C

 
  
 

. 

Table 3. Complexity comparison of decoding algorithms for (10, 6) & (16, 10) RRNS. 

 Variant of paper [13] Paper [17] Algorithm (Section III) Algorithm (Section IV) 

Computation of Y via CRT or MRS    N/A 

Modular operation 45; 560 50; 392 0; 0 0; 0 

Comparison operation 45; 560 60; 448 19; 28 23; 32 

Subtraction operation 0; 0 0; 0 2; 2 2; 2 

Total complexity 90; 1,120 110; 840 21; 30 25; 34 

Note: The first & second entry in each box corresponds to (10, 6) & (16, 10) RRNS. 
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3) Assume a = 1. 

4) Compute ,
i

i Z
X Y  where Zi, i = 1, 2, … , 

n
n aC   is a 

product of any (n – a)-dimensional combination of moduli. 

5) If Xi is within legitimate range, then output X̂ = Xi. Or, if 
,n

n ai C   then increment a by 1. If a > t, then go to step 6. 

Otherwise, go to step 4. 
6) Declare more than t errors and stop. 
Thus, the problem of multiple error correction can be solved in 
polynomial time in the aforementioned scheme. To remedy the 
weakness that a large number of iterations are required to select 
correct residues via traversal, MLD is introduced to reduce 
nonessential operations in [17]. We omit the details. 

The computational complexity comparison between the 
proposed algorithms and the algorithms in [13] and [17] is 
listed in Table 2. With the exception of the algorithms in 
Section IV, these algorithms require computation of integer Y 
from the received residues y. This count is not included in 
Table 2 explicitly. Due to low complexity requirements for the 
dichotomy-based search algorithms, the proposed methods 
perform error control up to the error control capability of 
RNSCs in a computationally efficient manner. Table 3 lists the 
numeric values of the various entries in Table 2 for the (10, 6) 
double error–correcting RRNS and (16, 10) triple error–
correcting RRNS described in examples 4 and 5, respectively. 
We observe that our algorithms are based on “comparison 
operation.” They avoid modular operations or processing of 
large integers. This is in contrast to the algorithms in [13] and 
[17]. The algorithms presented here are expected to be simpler 
and better suited for high-speed, application environments. 

VI. Conclusion 

In this work, new computationally efficient error-control 
algorithms for RRNSs and RNS-PCs, collectively termed 
RNSCs, are presented under a unified framework. These 
algorithms require “comparison operations” as opposed to 
modular operations. This aspect is expected to lead to 
improvements in processing time when these algorithms are 
implemented in hardware. The proposed algorithms have a 
computational complexity of t  O(log2 n + log2 )m operations. 
This is significantly lower than the computational complexity 
of existing algorithms. A refinement is described that avoids 
modular operations in the first step of decoding algorithms, at a 
slight increase in computational complexity of log2 n 
comparisons. Two other refinements are described that further 
simplify the computations associated with the first step. The 
techniques can be extended to non–RNSCs and other scenarios 
such as correction of burst errors. 
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