The antibacterial effect of xanthorrhizol as an endodontic irrigant on Enterococcus faecalis

  • Yue, Wonyoung (Microscope Center, Department of Conservative Dentistry and Oral Science Research Center, College of Dentistry, Yonsei University) ;
  • Song, Minju (Division of Constitutive & Regenerative Sciences Section of Restorative Dentistry, UCLA School of Dentistry) ;
  • Kang, Si-Mook (Department of Preventive Dentistry and Public Oral Health, BK 21 Plus Project, College of Dentistry, Yonsei University) ;
  • Kim, Baek-il (Department of Preventive Dentistry and Public Oral Health, BK 21 Plus Project, College of Dentistry, Yonsei University) ;
  • Yoon, Tai-Cheol (Deptartment of Conservative Dentistry and Endodontics, National Health Insurance Service Ilsan Hospital) ;
  • Kim, Euiseong (Microscope Center, Department of Conservative Dentistry and Oral Science Research Center, College of Dentistry, Yonsei University)
  • 투고 : 2015.11.19
  • 심사 : 2016.01.15
  • 발행 : 2016.03.01

초록

Objectives The aim of this study was to evaluate the antibacterial effect of xanthorrhizol (XTZ) on E. faecalis, compared with 2% chlorhexidine (CHX). Materials and Methods Normal physiological state (NS), starvation state (SS), and alkalization state (AS) of E. faecalis were used. A solution containing 1% XTZ in 30% ethanol, 1% dimethyl sulfoxide (DMSO), and 100 mg/ml sodium methyl cocoyl taurate was used and is referred to as Xan in this study. To determine the minimal bactericidal concentration (MBC) of Xan and CHX, $500{\mu}l$ of E. faecalis (NS and two stress states) was added to a microtube containing $500{\mu}l$ of serial 2-fold dilutions of 1% Xan and 2% CHX (1:2-1:128). The MBC of each antimicrobial was determined by the plate count method. Results The antibacterial effect of Xan was more effective on E. faecalis in AS than in the other states (NS, SS) at 0.125% Xan and 0.03325% Xan (P<0.05). In contrast, the antibacterial effect of CHX was more effective against E. faecalis in SS than the other states (NS, AS) at 0.0625% CHX (P<0.05). In SS, the antibacterial effect of CHX was more effective than that of Xan at 0.125% and 0.0625% (P<0.05). However, in AS, the antibacterial effect of Xan was more effective than that of CHX at 0.0625% and 0.03325% (P<0.05). Conclusions In endodontic retreatment cases in which it is important to effectively remove E. faecalis from the infected root canal, Xan may be more suitable when combined with NaOCl than CHX.

키워드

과제정보

연구 과제 주관 기관 : Yonsei University College of Dentistry

참고문헌

  1. Kakehashi S, Stanley HR, Fitzgerald RJ. The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surg Oral Med Oral Pathol 1965;20:340-9. https://doi.org/10.1016/0030-4220(65)90166-0
  2. Friedman S. Success and failure of initial endodontic therapy. Ont Dent 1997;74:35-8.
  3. Brown LJN, Nask KD, John BA, Warren M. The Economics of Endodontics. American Association of Endodontics 2003.
  4. Ng YL, Mann V, Rahbaran S, Lewsey J, Gulabivala K. Outcome of primary root canal treatment: systematic review of the literature -- Part 2. Influence of clinical factors. Int Endod J 2008;41:6-31.
  5. Nair PN. On the causes of persistent apical periodontitis: a review. Int Endod J 2006;39:249-81. https://doi.org/10.1111/j.1365-2591.2006.01099.x
  6. Stuart CH, Schwartz SA, Beeson TJ, Owatz CB. Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod 2006;32:93-8.
  7. Rince A, Le Breton Y, Verneuil N, Giard JC, Hartke A, Auffray Y. Physiological and molecular aspects of bile salt response in Enterococcus faecalis. Int J Food Microbiol 2003;88:207-13. https://doi.org/10.1016/S0168-1605(03)00182-X
  8. Nakajo K, Komori R, Ishikawa S, Ueno T, Suzuki Y, Iwami Y, et al. Resistance to acidic and alkaline environments in the endodontic pathogen Enterococcus faecalis. Oral Microbiol Immunol 2006;21:283-8. https://doi.org/10.1111/j.1399-302X.2006.00289.x
  9. Mah TF, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 2001;9:34-9. https://doi.org/10.1016/S0966-842X(00)01913-2
  10. Siqueira JF Jr., Machado AG, Silveira RM, Lopes HP, de Uzeda M. Evaluation of the effectiveness of sodium hypochlorite used with three irrigation methods in the elimination of Enterococcus faecalis from the root canal, in vitro. Int Endod J 1997;30:279-82. https://doi.org/10.1111/j.1365-2591.1997.tb00708.x
  11. Hulsmann M, Hahn W. Complications during root canal irrigation -- literature review and case reports. Int Endod J 2000;33:186-93.
  12. Sundqvist G, Figdor D, Persson S, Sjogren U. Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998;85:86-93. https://doi.org/10.1016/S1079-2104(98)90404-8
  13. Evanov C, Liewehr F, Buxton TB, Joyce AP. Antibacterial efficacy of calcium hydroxide and chlorhexidine gluconate irrigants at 37 degrees C and 46 degrees C. J Endod 2004;30:653-7. https://doi.org/10.1097/01.DON.0000121620.11272.22
  14. Mohammadi Z, Jafarzadeh H, Shalavi S. Antimicrobial efficacy of chlorhexidine as a root canal irrigant: a literature review. J Oral Sci 2014;56:99-103. https://doi.org/10.2334/josnusd.56.99
  15. Basrani BR, Manek S, Sodhi RN, Fillery E, Manzur A. Interaction between sodium hypochlorite and chlorhexidine gluconate. J Endod 2007;33:966-9. https://doi.org/10.1016/j.joen.2007.04.001
  16. Krishnamurthy S, Sudhakaran S. Evaluation and prevention of the precipitate formed on interaction between sodium hypochlorite and chlorhexidine. J Endod 2010;36:1154-7. https://doi.org/10.1016/j.joen.2010.01.012
  17. Prado M, Santos Junior HM, Rezende CM, Pinto AC, Faria RB, Simao RA, et al. Interactions between irrigants commonly used in endodontic practice: a chemical analysis. J Endod 2013;39:505-10. https://doi.org/10.1016/j.joen.2012.11.050
  18. Hwang JK, Shim JS, Baek NI, Pyun YR. Xanthorrhizol: a potential antibacterial agent from Curcuma xanthorrhiza against Streptococcus mutans. Planta Med 2000;66:196-7. https://doi.org/10.1055/s-0029-1243135
  19. Choi MA, Kim SH, Chung WY, Hwang JK, Park KK. Xanthorrhizol, a natural sesquiterpenoid from Curcuma xanthorrhiza, has an anti-metastatic potential in experimental mouse lung metastasis model. Biochem Biophys Res Commun 2005;326:210-7.
  20. Kim SH, Hong KO, Hwang JK, Park KK. Xanthorrhizol has a potential to attenuate the high dose cisplatin-induced nephrotoxicity in mice. Food Chem Toxicol 2005;43:117-22. https://doi.org/10.1016/j.fct.2004.08.018
  21. Itokawa H, Hirayama F, Funakoshi K, Takeya K. Studies on the antitumor bisabolane sesquiterpenoids isolated from Curcuma xanthorrhiza. Chem Pharm Bull (Tokyo) 1985;33:3488-92. https://doi.org/10.1248/cpb.33.3488
  22. Claeson P, Panthong A, Tuchinda P, Reutrakul V, Kanjanapothi D, Taylor WC, et al. Three nonphenolic diarylheptanoids with anti-inflammatory activity from Curcuma xanthorrhiza. Planta Med 1993;59:451-4. https://doi.org/10.1055/s-2006-959730
  23. Claeson P, Pongprayoon U, Sematong T, Tuchinada P, Reutrakul V, Soontornsaratune P, et al. Nonphenolic linear diarylheptanoids from Curcuma xanthorrhiza: a novel type of topical antiinflammatory agents: structure-activity relationship. Planta Med 1996;62:236-40. https://doi.org/10.1055/s-2006-957867
  24. Kim JE, Kim HE, Hwang JK, Lee HJ, Kwon HK, Kim BI. Antibacterial characteristics of Curcuma xanthorrhiza extract on Streptococcus mutans biofilm. J Microbiol 2008;46:228-32. https://doi.org/10.1007/s12275-007-0167-7
  25. Hwang SJ, Kim SN. Chang SY, Ha WH, Kim IS, Jin BH, Paik DI, Kim HD. Gingivitis suppression effect of the de now dentifrice containing Curcuma Xanthorrhiza, bamboo salt and various additives. J Kor Acad Dent Health 2005;29:451-62.
  26. Hwang JK, Shim JS, Pyun YR. Antibacterial activity of xanthorrhizol from Curcuma xanthorrhiza against oral pathogens. Fitoterapia 2000;71:321-3. https://doi.org/10.1016/S0367-326X(99)00170-7
  27. Tong Z, Zhou L, Kuang R, Lv H, Qu T, Ni L. In vitro evaluation of MTAD and nisin in combination against common pathogens associated with root canal infection. J Endod 2012;38:490-4. https://doi.org/10.1016/j.joen.2011.11.015
  28. Peters OA. Current challenges and concepts in the preparation of root canal systems: a review. J Endod 2004;30:559-67. https://doi.org/10.1097/01.DON.0000129039.59003.9D
  29. Carrotte P. Endodontics: Part 1. The modern concept of root canal treatment. Br Dent J 2004;197:181-3. https://doi.org/10.1038/sj.bdj.4811565
  30. Rocas IN, Siqueira JF Jr., Santos KR. Association of Enterococcus faecalis with different forms of periradicular diseases. J Endod 2004;30:315-20. https://doi.org/10.1097/00004770-200405000-00004
  31. Portenier I, Waltimo T, Orstavik D, Haapasalo M. The susceptibility of starved, stationary phase, and growing cells of Enterococcus faecalis to endodontic medicaments. J Endod 2005;31:380-6. https://doi.org/10.1097/01.don.0000145421.84121.c8
  32. Kobayashi H. A proton-translocating ATPase regulates pH of the bacterial cytoplasm. J Biol Chem 1985;260:72-6.
  33. Kakinuma Y, Igarashi K. Potassium/proton antiport system of growing Enterococcus hirae at high pH. J Bacteriol 1995;177:2227-9.
  34. Hartke A, Giard JC, Laplace JM, Auffray Y. Survival of Enterococcus faecalis in an oligotrophic microcosm: changes in morphology, development of general stress resistance, and analysis of protein synthesis. Appl Environ Microbiol. 1998;64:4238-45.
  35. Liu H, Wei X, Ling J, Wang W, Huang X. Biofilm formation capability of Enterococcus faecalis cells in starvation phase and its susceptibility to sodium hypochlorite. J Endod 2010;36:630-5. https://doi.org/10.1016/j.joen.2009.11.016
  36. Giard JC, Hartke A, Flahaut S, Benachour A, Boutibonnes P, Auffray Y. Starvation-induced multiresistance in Enterococcus faecalis JH2-2. Curr Microbiol 1996;32:264-71. https://doi.org/10.1007/s002849900048
  37. Greenstein G, Berman C, Jaffin R. Chlorhexidine. An adjunct to periodontal therapy. J Periodontol 1986;57:370-7.
  38. Emilson CG. Susceptibility of various microorganisms to chlorhexidine. Scand J Dent Res 1977;85:255-65.
  39. Chhabra RS, Huff JE, Haseman JK, Elwell MR, Peters AC. Carcinogenicity of p-chloroaniline in rats and mice. Food Chem Toxicol 1991;29:119-24. https://doi.org/10.1016/0278-6915(91)90166-5
  40. Tavtigian SV, Pierotti MA, Borresen-Dale AL. International Agency for Research on Cancer workshop on 'Expression array analyses in breast cancer taxonomy'. Breast Cancer Res 2006;8:303. https://doi.org/10.1186/bcr1609
  41. Rukayadi Y, Hwang JK. In vitro activity of xanthorrhizol against Streptococcus mutans biofilms. Lett Appl Microbiol 2006;42:400-4. https://doi.org/10.1111/j.1472-765X.2006.01876.x
  42. Chami N, Bennis S, Chami F, Aboussekhra A, Remmal A. Study of anticandidal activity of carvacrol and eugenol in vitro and in vivo. Oral Microbiol Immunol 2005;20:106-11. https://doi.org/10.1111/j.1399-302X.2004.00202.x
  43. Rukayadi Y, Hwang JK. In vitro activity of xanthorrhizol isolated from the rhizome of Javanese turmeric (Curcuma xanthorrhiza Roxb.) against Candida albicans biofilms. Phytother Res 2013;27:1061-6. https://doi.org/10.1002/ptr.4834
  44. Peciuliene V, Maneliene R, Balcikonyte E, Drukteinis S, Rutkunas V. Microorganisms in root canal infections: a review. Stomatologija 2008;10:4-9.