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Block compressed sensing (BCS) is widely used in image 
sampling and is an efficient, effective technique. Through 
the use of BCS, an image can be simultaneously 
compressed and encrypted. In this paper, a novel 
reversible data hiding (RDH) method is proposed to 
embed additional data into BCS images. The proposed 
method is the first RDH method of its kind for BCS 
images. Results demonstrate that our approach performs 
better compared with other state-of-the-art RDH methods 
on encrypted images. 
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I. Introduction 

Reversible data hiding (RDH) is a technology that embeds a 
secret message into a cover image in a reversible manner. In 
recent years, to protect the privacy of a cover image during an 
RDH process, attentions have been drawn to the research of 
RDH in encrypted images. In [1], Zhang proposed an RDH 
method for use with an image that has been fully encrypted 
using a standard stream cipher. Given such an encrypted image, 
we first divide it into several blocks. Then, by flipping the three 
least significant bits (LSBs) of every eight in each pixel for half 
of the pixels in each block, additional data can be embedded. 
Data extraction and image recovery is then carried out through 
a determination of which pixels have been flipped within each 
block. To separate data extraction from image decryption, 
Zhang [2] emptied out space for data embedding based on an 
idea for compressing encrypted images [3], [4].  

Ma and others [5] proposed an RDH method for encrypted 
images, and within this method, space meant for data 
embedding is reserved prior to any image encryption. In the 
methods of [2]–[5], an extra processing step (that is, image 
compression) is required. Zhang’s method [1] is a classical 
block division–based method — one that was improved upon 
later by [6]–[8]. However, the extracted bit-error rate of the 
improved methods in [6]–[8] is still unsatisfactory. In addition, 
an encrypted image cannot be compressed — a fact that can 
result in high communication overheads. 

By using compressed sensing (CS) [9], both compression 
[10] and encryption [11] can be achieved simultaneously. For 
natural image sampling, block compressed sensing (BCS) [12] 
is widely used for its high computing speed and ease of 
implementation. BCS images may have broader application 
prospects compared with stream cipher–encrypted images due 
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to the fact that the communication overhead of BCS images is 
lower. However, so far, there has been no RDH method 
proposed for BCS images. Therefore, we offer a solution to this 
kind of application in this paper.  

II. Proposed Method 

As illustrated in Fig. 1, an original image is first sampled by 
a content owner using BCS to obtain a BCS image according 
to a Gaussian measurement matrix generated from a secret 
seed. Then, additional data can be embedded into the obtained 
BCS image by a data hider in accordance with a data-hiding 
key. When the receiver possesses both the data-hiding key and 
the secret seed (both of which are required to generate a 
measurement matrix), then the image can be recovered and any 
embedded data may be extracted at the same time. 

1. BCS 

At the initial stage of our proposed architecture, an original 

image is divided into non-overlapping blocks, each of which is 

of the same size. For each block, let nX  represent a 

vectorized signal of a block, and let mY  ( m n ) be a 

number of linear random projections (measurements) obtained 
 

 

Fig. 1. Proposed architecture. 
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Fig. 2. CS performed on one block. 
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The measurement matrix m nA  must satisfy a restricted 
isometry property (RIP) of order k ( k n ). It has been shown 
that the entries of such a matrix can be chosen according to a 
Gaussian distribution [13], generated using a random seed. 
Figure 2 gives an illustration of CS for a block. The obtained 
measurement, Y, is denoted as a dot. Its square is less than that 
of the original signal, X. When an image is transformed into 
multiple measurements after BCS, the amount of data is 
reduced (see Fig. 3). Finally, the obtained measurements are 
assembled to form a BCS image. Thus, the size of the original 
image is decreased, and any content is concealed. The BCS 
applied here is secure due to the fact that the underlying 
measurement matrix used in each block is believed to be secure 
[11]. 

2. Data Embedding 

In Fig. 3, each dot (measurement) corresponds to an image 
block. To embed data into a BCS image, we first divide the 
measurements into two categories — embeddable and un-
embeddable. In Fig. 4, the measurements denoted by the black 
dots are used for data embedding, and the white dots are set to 
be un-embeddable. Here, we assume that one dot can carry one 
bit, and the number of bits of any additional data is smaller than 
that of the black dots. Obviously, the embedding capacity 
varies with the block size.  

At the beginning of data embedding, a data hider encrypts 
any additional data to be embedded with a data-hiding key. It 
then embeds the ith bit of encrypted additional data into the ith 
embeddable measurement (that is, the black dots). If the bit is 0, 
then it does nothing; else, it replaces measurement Y with Y 
using 

255 ,Y A Y   


               (2) 

where 255


 denotes a block in which the values of its pixels 

are all set to be 255. It is noted that only the result of 255A


 

can be known to the data hider. The measurement matrix A is 

secret. 
 

 

Fig. 4. Division of BCS image by measurements.  
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3. Data Extraction and Image Recovery 

Knowing the measurements, Y, the measurement matrix, A, 
and that X is k-sparse, we can reconstruct the original signal,  
X, approximately by solving the following 1 minimization 
problem [13]: 

minimize 1|| ||X  

s.t.  .Y AX                  (3) 

For natural images, the original signal X is not sparse, but it 
has a sparse representation in some orthonormal bases. Let 

n n   denote an orthonormal matrix whose columns are 
the basis vectors. Then, X can be represented as  , where  
is nearly k-sparse. Given the measurements Y = AX, the 
original signal X can be recovered by solving the following 
minimization problem: 

minimize 1|| ||  

s.t. .Y A                 (4) 

In the case of modified measurements, Y, where 
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the recovered signal should be 255 X


; that is, a flipped X. 
Due to the spatial correlation of natural images, any border 

pixels between two unflipped blocks are smoother than those 
that have been flipped. Since the neighboring blocks of X are 
all unflipped (as shown in Fig. 4; the blocks with a white dot 
inside cannot be flipped by data embedding), a flipped X can 
be identified according to the following side match method. 

Suppose there are four neighboring blocks around X. Let pu,v 
denote the pixel value at position (u, v) in the block represented 
by X of size s1 × s2. The fluctuation function of the block sides 
can then be defined as 
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where
10, 1, ,0, ,v s v up p p , and 

2, 1u sp   fall into the neighboring 

blocks.  
Similarly, the fluctuation function of a flipped X can be 

computed from 
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where ,u vp  denotes a flipped pixel value of X. 

If ,f f   which means the block sides of the recovered X 
are smoother than that of the flipped X, then the recovered X is 
considered unflipped, and the bit embedded in it is 0; otherwise, 
X is considered flipped during the data embedding procedure, 
and the bit embedded in it is then 1. Moreover, X can then be 
flipped again to obtain the final recovered signal. 

At last, all the recovered signals are collected to form the 
recovered image, and all the extracted bits are concatenated 
and then decrypted using the data-hiding key to obtain the final 
extracted data. 

III. Experimental Results 

A standard test image, named Lena and of size 512 × 512, is 
tested first. Assume the size of a divided block to be 8 × 8. 
Then, the original signal of the block (that is, X) can be 
orthogonally decomposed into sparse discrete cosine 
transformation coefficients. The orthogonal matching pursuit is 
used to reconstruct the image. We set the compression ratio to 
be 0.8; thus, the size of the original image is decreased to 80%. 
The results are shown in Fig. 5, where (a) is the original image 
and (b) is the final recovered image after 2,048 bits are 
embedded (its PSNR value is 33.90). The embedded bits are 
extracted perfectly, and the recovered image is exactly the 
same as that obtained directly from a BCS image with no 
additional data embedded. For the next image, named Baboon, 
the settings are the same as above, and the experimental results 
show almost the worst case of image recovery using the 
proposed method. In Fig. 6(b), although it seems the same as 
Fig. 6(a), there exist 50 incorrect recovered blocks; that is, 
about 1.2% of the blocks have been flipped compared with the 
original BCS image, and the PSNR is 24.44. However, if the 
block is 16 × 16, then correct data-extraction and perfect image 
recovery can both be ensured. 

In further experiments, we randomly selected 50 natural 
images sized 512 × 512 from [14] and presented the average 
exacted bit-error rate comparison. 

BCS is a lossy compression method, but the compression is 
 

 

Fig. 5. Lena: (a) original image and (b) final recovered image.

(a) (b) 
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Fig. 6. Baboon: (a) original image and (b) final recovered image.

(a) (b) 

 
 

 

Fig. 7. Average extracted BER comparison. 
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based on blocks. Each block corresponds to one measurement, 
and each measurement can carry one bit of any additional data 
to be embedded. Similarly, in the block division–based 
methods [1] and [6], which are for uncompressed images, one 
image block is also responsible for carrying one bit. Therefore, 
[1], [6], and the recent improved version [7], [8] are compared 
with our method. For a fair comparison, the average exacted 
bit-error rates are computed under different embedding rates 
(bits per pixel (bpp)) rather than data embedding capacity (bits). 

It is noticed that in [1] and [6]–[8], the content owner 
encrypts but does not compress the original image I to obtain 
E(I), and the data hider embeds data into E(I). A user can 
extract data from the embedded E(I) and try to losslessly 
restore the original image I. However, in the proposed method, 
the original image I is encrypted and compressed by BCS, and 
from a BCS image one can only obtain an estimated version of 
I, denoted by I. The data hider embeds data into the BCS 
image. A user can extract data from the embedded BCS image 
(that is, a BCS image containing embedded data) and try to 
restore I rather than the original image I. Therefore, the 
embedding rate of our method should be “bpp of I” rather than 
“bpp of I,” but the results of the two are equal to each other. 

The comparison results are shown in Fig. 7. When the side 
length of a block is set to be 32 (respectively, 16, 8), the 
embedding rates of Zhang’s method [1] and Hong and others’ 
method [6] are both 0.0010 (respectively, 0.0039, 0.0156), and 
it is 0.0005 (respectively, 0.0020, 0.0078) using the proposed 
method. Since Li and others’ methods, [7] and [8], break the 
idea of block division and can achieve arbitrarily assigned 
embedding rates, we calculate the average extracted bit-error 
rates under each given embedding rate on the horizontal axis. 
The error rates are calculated as the ratio of the number of 
incorrectly recovered embedded bits to the total number of 
embedded bits. As shown in Fig. 7, it is clear that the error rates 
of the proposed method are significantly lower than that of [1] 
and [6]–[8]. The main reason is that the correctness of the 
border-concatenated pixels of the unflipped blocks can be 
ensured, which can help with the recovery of blocks containing 
any additional data, as well as with the extraction of any 
embedded bits. Furthermore, the proposed method shows more 
steady performance. 

IV. Conclusion 

The first ever RDH method for BCS images is proposed in 
this paper. Experiments show that the proposed method can 
outperform existing RDH methods in encrypted images. 
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