
J Electr Eng Technol.2016; 11(5): 1289-1298
http://dx.doi.org/10.5370/JEET.2016.11.5.1289

 1289
Copyright ⓒ The Korean Institute of Electrical Engineers

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

A Modeling Approach for Energy Saving Based on GA-BP Neural
Network

Junke Li*, Bing Guo†, Yan Shen**, Deguang Li* and Yanhui Huang*

Abstract – To cope with the increasing scale of scientific data and computational complexity of daily
data, more and more cores have been integrated into GPU(Graphic Processing Units) and its working
frequency is continually upgrading, which makes it being widely used in general computing for
assisting CPU to accelerate program. While GPU offers powerful computing capability, the problem of
the energy consumption becomes particularly prominently and it has become one of the important
issues hindering development of GPU. For the purpose of solving this problem, DVFS (Dynamic
Voltage Frequency Scaling) becomes an effective solution. Because the previous works only focus on
single component and use linear relationship to do DVFS without considering energy saving of other
units in system at software runtime, therefore we propose an energy saving model (CDVFS) of
considering the characteristics of both GPU and memory at software runtime based on GA-BP
(Genetic Algorithm-Back propagation) neural network to make better use of the relationship between
components for energy saving. Firstly, the model assumes that functional relation between the software
runtime characteristics of GPU and memory and the appropriate frequency which corresponds to the
GPU and memory as nonlinear. Secondly, we extract five characteristics and use GA-BP neural
network to fit the nonlinear functional relation. At last, experiments demonstrate the effectiveness of
the approach and reasonableness of assumption, and also show that CDVFS can get average energy
savings of 17.06% compared with previous works within acceptable performance loss.

Keywords: Energy saving, Model, Software runtime characteristics, GA-BP neural network, DVFS

1. Introduction

The ICT (information and communication technology)

industry is growing particularly fast in the world, and its
carbon emissions are still in constant growth. A report of
Gartner in 2007 points that the ICT industry accounts for
approximately two percent of global carbon dioxide
emissions and this number will be doubled by 2020.
Energy conservation and emission reduction in the field of
ICT has become an urgent issue to be faced by all the
countries in the world.

In 21st century, increasing scale of data puts forward
higher requirement on computing speed than ever before.
The data scale of simulation for nuclear explosion, satellite
image data processing, weather forecast, molecular
dynamics and genetic engineering is in TB (Tera-bytes, 240
bytes) or even PB (Peta-bytes, 250 bytes) orders of
magnitude and this is also the same in games and high-
definition video decoding in our daily life. These data need
to be processed by processor with the computing power of
trillion times per second or more. With the development of

semiconductor technology, the improved performance of
GPU has far exceeded than that of CPU. In order to take
full advantage of powerful computing resources of GPU,
the programmable pixel processing module is added to
graphics pipeline to make the GPU gradually be widely
used in the field of general purpose computing area. The
enhancement of GPU computing power, however, is at
the cost of increasing energy consumption. While the
integration of GPU increases rapidly, energy consumption
has gradually become one of the main factors that restrict
GPU to be applied in the wide application. To alleviate
the problem, reducing power consumption on the premise
of guaranteeing performance has become the focus of
attention.

Current energy consumption of CMOS (complementary
metal oxide semiconductor) circuit is mainly composed of
static and dynamic energy consumption. The latter occupies
the dominant position in the total energy consumption and
it has approximately exponential relationship with running
frequency. Therefore dynamically adjusting the operating
frequency based on status of program can significantly
reduce the energy consumption. DVFS is an energy saving
mechanism by dynamically scaling frequency and voltage,
changing and switching the state of memory bank and I/O
device so as to make hardware provide appropriate
performance based on the state of program. Its appearance
provides a new opportunity for researching energy saving

† Corresponding Author: College of Computer Science, Sichuan
University, China. (guobing@scu.edu.cn)

* College of Computer Science, Sichuan University, China.
(ljk2006ljk@163.com)

** School of Control Engineering, Chengdu University of Information
Technology, China. (sheny@cuit.edu.cn)

Received: November 10, 2015; Accepted: April 27, 2016

ISSN(Print) 1975-0102
ISSN(Online) 2093-7423

A Modeling Approach for Energy Saving Based on GA-BP Neural Network

 1290 │ J Electr Eng Technol.2016; 11(5): 1289-1298

on GPU. The rest of paper is organized as followings. In
section 2, the related work will be presented. Section 3
shows the energy saving model in details. The measure-
ment of software runtime characteristics and the fitting
method of GA-BP neural network are described respectively
in Section 4 and Section 5. Section 6 gives experimental
results. Finally, conclusions about our work will be showed
in Section 7.

2. Related works

DVFS provides a new way for researching energy saving

and a number of techniques have been proposed in the past.
These previous DVFS-related works can be classified into
the following groups.

The first category of these technologies uses deadline of
the task to implement algorithms. [2] proposes a DVFS
approach under constraint of task deadline. [3] reduces the
global energy dissipation by proposing the DVFS policy
under the constraint of the end-to-end delay. [4] identifies
different traffic distribution of time slot in NoC (network
on a ship) by using the worst-case packet deadline to do
DVFS in order to reduce the energy consumption of the
NoC. These policies know the task arrival times and
deadlines in advance and scale frequency to reduce energy
dissipation while meeting real-time deadlines. The second
category uses compiler or application assisted information
to guide DVFS scheduling for energy saving. In [5], the
author proposes energy management of application layer
by using information provided by the application. In [6],
authors propose the compiler assisted DVFS and insert
relevant DVFS instruction into the program to realize the
purpose of saving energy depending on the detected type
of the program that compiler provided. This group of
methods needs additional code added to the program
before it is executed on the system or compiler support
for performing DVFS. The third category uses software
runtime characteristics or statistics to guide DVFS for
energy saving. [7] proposes a DVFS approach that uses the
relation between IPC (instructions per cycle) information
and frequency during the software runtime to reduce
energy dissipation under the condition of the memory
stall. [8] proposes a DVFS scheduling approach of
multicore CPU that uses CPI, MAPI and the service level
agreement (SLA) request information between the client
and the server. In [9], DVFS is formulated into a multiple
choice knapsack problem to minimize total energy
consumption by giving MPI (last level cache misses per
instruction) distribution of the program, the corresponding
energy consumption and other statistics. [10] proposes a
regression-based DVFS model by distinguishing the tasks
on-chip or off-chip. An online DVFS is proposed in [11]
based on the distribution of memory stall time, behavior of
program phase and computational workload at software
runtime. A DVFS scheduling approach is proposed in [12]

using relationship between memory frequency and the
threshold. [13] uses the relationship between frequency and
weight vector that can be calculated by the parameter CPI
and μ to implement the DVFS algorithm. For memory
power consumption, [14] indicates that the memory power
consumption accounts for 30% of the system so that the
research on memory has a certain extent of significance
for energy saving. [15] proposes the DVFS strategy based
on memory power consumption, which illustrates that
reducing memory frequency will not produce significant
impact on the performance of the task when the memory
bandwidth of program requirements is not very big. [16]
scales memory frequency through minimizing system SER
(system energy ratio) by using performance counters and
memory power consumption performance model. Although
using the runtime characteristics of program to guide the
DVFS can achieve the aim of energy saving, these studies
only take runtime characteristics of single component into
consideration and neglect the energy saving of coordinated
GPU, memory and I/O.

Due to researches on coordinated component DVFS are
relatively rare and they mainly use linear approaches, in
this paper, we mainly discuss the problem of coordinated
GPU and memory DVFS for energy saving. Inspired by the
software runtime characteristics [7-15](reducing processor
frequency in memory intensive program to save energy will
not affect the overall system performance and decreasing
memory frequency in compute-intensive programs to save
energy will not affect the overall system performance), we
propose a model(CDVFS) of coordinated GPU-memory
energy saving approach based on GA-BP neural network,
which jointly scales the GPU and memory frequency to
achieve the goal of energy saving by the key characteristics
that can be extracted from hardware at software runtime.

3. Energy Saving Model

It is widely accepted by scholars that using the runtime

characteristics to guide DVFS can save energy. But these
studies that guided by characteristics mainly use linear
approach and regard characteristics and the corresponding
frequency of hardware as N linear relationship [5, 7-13].
The linear relationship can be described as the following
equation:

 1 1 2 2 n nF N P N P N P= + + + (1)

where, F denotes the current frequency. Pn indicates the
value of software runtime characteristics. Nn is the weight
of each characteristic. Although using the model can get
the result, it has the following deficiencies, Such as 1:
Hypothesis of the linear relationship between runtime
characteristics and frequency lacks practical support. 2:
single indicator will not fully reflect frequency demand
of out-of-order execution, data dependence and branch

Junke Li, Bing Guo, Yan Shen, Deguang Li and Yanhui Huang

 http://www.jeet.or.kr │ 1291

prediction phenomena. Current approaches are not
systematically considered into the frequency relevance
between the GPU and memory at software runtime [7-
16]. Based on what have been analyzed above, we argue
that there is a nonlinear relationship (Linear functional
relationship can be considered as a special nonlinear
functional relationship) between appropriate frequency and
software runtime characteristics. By analyzing them, we
can get the following relationship model:

() ()

(, , , ,)
F Comp1,Comp2 f SRC

f AI GMCR MAPI CPI FL
=
= (2)

where, F(Comp1, Comp2) indicates the appropriate
frequency of each component (Comp1,Comp2) at software
runtime. SRC is the metric of the running software, f
stands for the nonlinear functional relation. In dealing
with nonlinear relationship, BP neural network is able to
compute mathematical relationship with high accuracy
no matter how complicated it would be. Therefore, in
this paper, BP neural network is used as f function. AI,
GMCR, MAPI, CPI, FL and its corresponding concrete
measurement will be discussed in the next section. The
energy saving model based on GA-BP neural network can
be divided into the following five steps:

(1) Suppose there is a non-linear function relationship
between appropriate frequency and characteristics at
software runtime.

(2) Measure characteristic quantities that are related to the
frequency of GPU and memory at software runtime.

(3) Obtain appropriate frequency at software runtime by
running benchmarks through adjusting frequency.

(4) Preprocess the characteristic quantities to fit the input
of the model.

(5) Fit the nonlinear function f through the GA-BP neural
network. The input of GA-BP neural network is
characteristics at software runtime and the output is the
appropriate frequency of GPU and memory at software
runtime.

4. Measure the characteristic quantities

Selecting characteristics of GPU and memory can affect

the result of the model, thus this paper selects five metrics
(arithmetic intensity, global memory to computation cycle
ratio, memory access per instruction, instruction per cycle,
frequency level) related to appropriate frequency of
hardware from the perspective of running software
behavior. From the view of macroscopic, executing
program goes through the process that the programs are
loaded into memory from the peripheral and fetch the
instruction from the memory to run. From the view of
microcosmic, software has feature of program locality at
software runtime. Therefore, the five metrics can
comprehensively reflect the intensive degree of GPU and

memory at software runtime and they can be used to
reflect the appropriate frequency related to the workload.
Characteristic and its measurement will be made concrete
analysis in the following.

4.1 Arithmetic intensity

AI (Arithmetic intensity) is first proposed in [17] to

construct the roofline model and evaluate performance of
program. It provides the optimization direction for
programmers to judge whether the program is compute
intensive or memory intensive. It is the ratio of floating
point operations per second to accessing bytes per second
from memory, which is shown in Eq. (3).

 /
flopsAI

bytes s
= (3)

where, flops (floating point operations per second) indicate
current peak floating point during the software running. B
ytes/s is the memory bandwidth used of the program. Eq.
(3) directly expresses the executing program focus on
which components at software runtime. The large value of
AI indicates the program is emphasized on the processor.

4.2 Global memory to computation cycle ratio

To verify whether the program is compute intensive or

memory intensive, [18] use a rule of thumb named “Global
memory to computation cycle ratio (GMCR)" to measure
the density of memory access during program running. The
value of the GMCR can be obtained by Eq. (4).

()

()
Number Global Memory TransactionsGMCR

Number Computation Instructions
= (4)

Number (Global Memory Transactions) and Number

(Computation Instructions) in Eq. (4) respectively indicate
number of executing memory access and number of
executing computations instruction per unit time. Like
arithmetic intensity, GMCR metric reflects the intensive
degree of the GPU and memory from the perspective of
instruction.

4.3 Memory access per instruction

The operations related to the memory are completed by

the instruction during the program execution. The more
times the memory is being accessed by the program in a
unit time, the more intensive the memory resources are
being exploited. MAPI (memory access per instruction)
metric in [19] is able to quantify such relationship.
Therefore, it can reflect the demand on memory bandwidth
of program at the software runtime. [8] uses MAPI to
change the frequency of memory and it can be calculated

A Modeling Approach for Energy Saving Based on GA-BP Neural Network

 1292 │ J Electr Eng Technol.2016; 11(5): 1289-1298

by using Eq. (5).

()

()
Number Memory AccessMAPI

Number Executed Instructions
= (5)

where, Number (Memory Access) indicates the Number of
memory access, and Number (Executed Instructions)
indicates the number of executed instructions.

4.4 Instruction per cycle

For the same program the shorter execution time is, the

more instructions are executed per unit time. When IPC is
increased, the utilization rate of processor increases, too.
This property is used by [8] to indicate the intensive degree
of the program in the processor. IPC is the average number
of executed instructions per clock cycle and it can be
expressed by Eq. (6).

()

()
Number Executed InstructionsIPC

Number processor Cycles
= (6)

In Eq. (6), Number (Processor Cycles) and Number

(Executed Instructions) respectively denotes cycles that
processor used and the number of instructions executed.

4.5 Frequency level

Due to the above metrics of the same program are

influenced by the current frequency of GPU, so it should
be considered as a characteristic. After the GPU frequency
is determined, the frequency of memory can be defined by
the above metrics. In this paper, the level of current
frequency is measured by Eq. (7).

 ()presentFL f max f= (7)

where, fpresent represents the current frequency of GPU.
max(f) is the maximum running frequency of the GPU.

5. Nonlinear Fitting of GA-BP Neural
Network

There is a nonlinear relationship between the runtime

characteristics and the corresponding appropriate frequency
of GPU and memory, and rational expression of this
relationship can guide DVFS at software runtime. Therefore,
how to express this kind of nonlinear is particularly
important. BP neural network is a kind of numerical
approximation method without establishing mathematical
equation. It can approximate any nonlinear function and
has good fitting ability by learning the input vector and
output vector. In order to express the relationship more
accurately, we use the genetic algorithm to optimize the

initial weights and threshold values of BP neural network.
Therefore, we adopt the GA-BP neural network to fit this
relationship.

5.1 Nonlinear fitting procedure of GA-BP neural

network

Steps of using GA-BP neural network to realize

nonlinear fitting are detailed as followings:

(1) Adjust the frequency under the guidance of software
runtime characteristics, measure five software runtime
characteristics from samples, and record the cor-
responding frequency of the GPU and memory.

(2) Preprocess those five characteristics and the cor-
responding frequency and use them as the input and
output value of the BP neural network respectively.

(3) Design the structure of the BP neural network (layers,
number of node and transfer function).

(4) Use the genetic algorithm to optimize weights and
threshold values of BP neural network and determine
the correlation between input and output.

(5) Put the collected characteristics within software runtime
into the established BP neural network and then get the
output value. What’s more, we compare the processed
output values with actual value to verify the validity of
the model.

5.2 Design GA-BP neural network

GA-BP neural network refers to using genetic algorithm

to optimize values of the weights and threshold to make BP
neural network achieve the best fitting effect. The structure
of BP should be firstly determined (number of hidden layer,
number of nodes in hidden layer, transfer function of each
layer) and then use the genetic algorithm (coding method,
fitness function, selection, crossover operation and
mutation operation) to optimize the values of weight and
threshold. What’s more, approximation error, convergence
speed and learning rate of neural network are factors that
need to be considered.

5.2.1 Determine the number of hidden layer

The number of hidden layer will affect the prediction

accuracy of network. If too much, it will lead to long
training time and over fitting phenomenon. Robert Hecht-
Nielson in [20] proves that BP network of single hidden
layer can approximate continuous function in any closed
interval. So BP neural network of single hidden layer can
finish the mapping of n to m dimensions.

5.2.2 Determine the number of nodes in hidden layer

The number of nodes in hidden layer will also affect the

prediction accuracy of BP neural network, but how many
nodes in hidden layer lacks the guidance of the scientific

Junke Li, Bing Guo, Yan Shen, Deguang Li and Yanhui Huang

 http://www.jeet.or.kr │ 1293

method. Generally, the following empirical formula is
always used to get the best numbers of nodes l:

 l n m a≤ + + (8)

where, l is the number of nodes in hidden layer. n is the
number of nodes in input layer. m is the number of nodes in
output layer. a is constant number between 0 ~ 10. In this
paper, there are five inputs(AI, MAPI, GMCR ,IPC and
FL) in the input layer and two outputs (the appropriate
frequency of GPU and memory) in the output layer, so the
scope of l is: 4~13.

5.2.3 Determine transfer function of each layer

Using different transfer functions will have different

effects on accuracy and learning rate, moreover, there is a
variety of options for the transfer function of hidden layer
and output layer, such as hardlim, hardlims, purelin, tansig,
logsig, etc. Through the experiment, we can see that using
the tansig and purelin as the transfer function can achieve
satisfactory results in convergence speed and error.
Therefore, we use the tansig and purelin as the transfer
function for hidden layer and output layer. The structure of
the BP neural network is shown in Fig. 1, where P is the
input vector, wij is the weight between input layer and
hidden layer, wjk is the weight between hidden layer and
output layer, Y is the output vector, tansig and purelin is
respectively the transfer function of hidden layer and
output layer.

5.2.4 Population coding

The population coding uses real number coding. Size

and composition of coding will be given after the structure
of the network is determined. Population coding consists of
four parts: the weights between input layer and hidden
layer, thresholds of hidden layer, thresholds of output layer
and the weights between hidden layer and output layer.

Population initialize randomly after population coding is
determined.

5.2.5 Fitness function

The fitness function determines the optimized direction

of the algorithm. In this paper, we use sum of absolute
value between the predicted output and the desired output
as the individual fitness value Fit. It can be calculated from
the Eq. (9).

=1

()
n

i i
i

Fit abs y o= −∑ (9)

where, n is the number of output nodes. yi is the
expectation output of the ith node. oi is the predicted output
of ith node.

5.2.6 Select operation

In this paper, we use roulette method which is the

strategy based on the proportion of the fitness values as the
selection operation in the genetic algorithm. The selection
probability Pi of each individual i is got by Eq. (10).

1

1 /

1/

i
i n

i
j

Fit
P

Fit
=

=

∑（ ）
 (10)

where, Fiti is the fitness value of individual i, and n is the
number of individuals.

5.2.7 Crossover operation

Crossover operation is to choose two individuals from

population to produce new excellent individual through
exchanging and recombining them. We use the real number
crossover method as crossover operation. The crossover
operation on j bit between the kth individual ak and the lth
individual al is as follows:

(1)
(1)

kj kj lj

lj lj kj

a a b a b
a a b a b

= − +⎧
⎨ = − +⎩

 (11)

where, b is a random number on interval [0, 1].

5.2.8 Mutation operation

Mutation operation means choosing an individual from

the population and selecting one gene in individual to
generate better individual by mutation. The method of
mutation operation is as follows:

() () 0.5
() () 0.5

ij ij max
ij

ij min ij

a a a * f g r
a

a a a * f g r
+ − >⎧

= ⎨ + − ≤⎩
 (12)

Fig. 1. Structure of BP neural network

A Modeling Approach for Energy Saving Based on GA-BP Neural Network

 1294 │ J Electr Eng Technol.2016; 11(5): 1289-1298

where, aij is the jth gene of ith individual. amax is the upper
bound of the gene. amin is the lower bound of the gene.
f(g)=k(1-g/Gmax)2aij, where, k is a random number, g is the
number of current iteration. Gmax is the largest number of
evolution. r is a random number on interval [0,1].

After the structure of BP neural network is determined,
we use genetic algorithm to optimize parameters of network.
For better measuring characteristics, the typical benchmarks
of CUDA are selected to test, such as batchCUBLAS,
BlackScholes, FastWalshTransform, Matrixmultiplication,
Matrixblas and MatrixTranspose. For our convenience, we
use the abbreviation batch, BS, FWT, MT, MB and MTP to
represent them respectively. That the software runs in
compute intensive, the memory intensive and mixed phase
has the heuristic significance for the frequency adjustment,
so the selected software should contain these phases as
many as possible. From this aspect, we select the MT as
compute intensive program, choose MTP as memory
intensive program, and select FFT as mixed program. We
use GT740M GPU platform to run these typical software,
and record their characteristics, corresponding frequency of
GPU and memory through the performance tuner. In order
to better approximate real frequency, we get the optimal
weight and threshold of each layer under the following

parameter settings: population size is 20, evolution time is
100, crossover probability is 0.55 and the mutation
probability is 0.18. Fig. 2 shows the weight and threshold
values of BP neural network under the mean square error
of 10-5 that obtained by genetic algorithm, where w1 is
13*5 weight matrix between input layer and hidden layer
and it is corresponding to the wij in Fig. 1. 13 and 5 are
respectively the number of nodes in hidden layer and the
number of nodes in input layer. b1 is the 13*1 threshold
matrix of hidden layer and the 13 is equals to the number
of nodes in hidden layer. w2 and b2 are the same meaning
as the w1 and b1. The only difference is that w2 is the
weight matrix between hidden layer and output layer and it
is corresponding to the wjk in Fig. 1 and b2 is the threshold
matrix of output layer.

6. Nonlinear Fitting of GA-BP Neural Network

In order to verify the validity of the CDVFS on energy

saving, this paper compares and analyzes the results
through the implement of CDVFS and actual running the
approach of [13] and [16] , where [13] is used for scaling
frequency of processors and [16] is used for adjusting
frequency of memory. For fair comparison, we combine
approach of [13] and [16] to illustrate results. Because the
existing approach lacks coordinated GPU and memory
DVFS, we call the combination approach as traditional
DVFS, which we use TDVFS for convenience. The
parameter in [13] is set as follows: the value of CPIavg is
got by running compute-intensive benchmark at each
frequency and CPIbase is the actual CPI value. We set the
performance constraint to 2% in [16] compared with non-
DVFS. [13] and [16] are mainly for single component, so
we set frequency of the memory in [13] to 980MHZ and
the GPU in [16] to 980MHZ.

As the runtime characteristics used in this paper has
difficulties to obtain, we stimulate the CDVFS proposed in
this paper after getting the experimental data from the
GT740M platform and recording characteristics parameter
at software runtime through the visual profiler. We use [21]
to get the energy consumption of actual program execution
and the simulated program execution. Fig. 3-Fig. 8 is the

0.5883 1.3225 1.1545 1.1878 0.7132
1.3576 0.6234 1.1273 0.1947 1.3055
0.2407 1.9552 0.2505 1.1372 0.2142
1.3234 0.0054 1.4226 0.9281 0.9680
1.4158 0.3088 1.3755 1.4514 0.7003
0.2938 1.4919 1.4984 0.7132 0.2230
1.31w

−
− − − −
− − − −
− −

−
−
−= 041 0.8196 0.1019 2.6129 0.0627
1.7926 1.4652 0.5621 0.4694 1.3399
0.8409 0.5375 1.5280 1.4812 0.4792
1.3156 1.0435 1.0652 0.8883 1.2973
1.2733 1.5167 0.0205 0.0620 1.7068
1.4195 0.7486 0.6260 2.0819 1.2282
1.351

− − −
− − −
− − − −

− − −
− −

− −
− 3 1.4744 0.6694 0.4943 0.4230
2.4676 0.311
2.0607
1.7795
1.4624
1.0585
0.3018
0.2624
0.1716
0.7601
0.6165
1.6005
1.8967
1.8619

1 2=b w

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭
⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

− −
− −

−

−
−

−

−

，

7 0.5314
0.3360 0.3345
0.4433 0.8032
0.4533 0.5769
0.2170 1.0678
0.8210 0.1001
0.1011 1.7410
0.2062 0.4254
0.3831 0.8418
0.8066 0.2981
0.2881 0.7466
0.2686 0.7748
1.3802 0.7709

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪

−
−

−

−

− − ⎪
⎪ ⎪
⎪
− −
− −
− −
−
⎪

⎭−

⎪
⎪

⎪⎩

0.7756
0.104

,
7

2b ⎧ ⎫= ⎨ ⎬
⎩ ⎭

⎪
⎪
⎪

−

Fig. 2. Optimized weight and threshold value of neural
network

625 650 675 700 725 750 775 800

400

500

600

700

800

900

1000

625 650 675 700 725 750 775 800

800

850

900

950

1000

(b)Memory

 Time(MS)

Fr
eq

ue
nc

uy
(M

H
Z)

(a)GPU

 CDVFS
 TDVFS
 [13]
 [16]

Fig. 3. Frequency variation of batch

Junke Li, Bing Guo, Yan Shen, Deguang Li and Yanhui Huang

 http://www.jeet.or.kr │ 1295

effect of frequency variation by CDVFS, TDVFS, [13] and
[16] under the program of batch, BS, FWT, MB, MT and
MTP. The black solid line with square, red dot line with
circle, dash blue line with upper triangle and dash dot olive
line with lower triangle represent CDVFS, TDVFS, [13]
and [16] in each figure respectively. The left part and right
part of each figure show respectively the frequency of GPU
and frequency of memory under above approaches.

Frequency of processor behaves as follows under each
approach. Because [16] is only for scaling frequency of
memory, we set the frequency of processor at the constant
number 980MHZ for each benchmark under it in the left
part of each figure. During the execution of MB in Fig. 6,
there is no difference in frequency change among CDVFS,
TDVFS and [13]. This also appears at execution of MT and
MTP in Fig. 7 and Fig. 8. These phenomena show that each
approach has the same effect on type of MT, MB and MTP
program. Runtime frequency of BS in Fig. 4 under CDVFS
is slightly lower than that under TDVFS and [13]. This
phenomenon indicates these approaches can adapt and
meet the demand on frequency of the BS-type program.
FWT program in Fig. 5 has the same phenomenon with
the BS program and the difference between them is that
the frequency generated by CDVFS is higher than that of
the TDVFS and [13] in three periods. This shows that
CDVFS is more sensitive in the aspect of satisfying the
frequency of the FWT-type program. During execution of
the batch program in Fig. 3, the frequency of CDVFS,
TDVFS and [13] coincides with about two-thirds of total
time. In the time that frequency doesn’t overlap, the BS-
liked phenomenon account for most of the time, this shows

that batch has the BS-liked effect under CDVFS. The
reason for phenomena above lies in that these approaches
have different principles in adjusting frequency. From
results got by all types of applications above, we can see
that these approaches can scale frequency of processor at
runtime and they have similar trends of frequency change
in most cases.

Frequency of memory behaves as follows under each
approach. As [13] is only for adjusting frequency of
processor, frequency of memory is ran at the constant
number 980MHZ for each benchmark in right part of each
figure. MB and MTP in Fig. 6 and in Fig. 8 show the
similar trend of frequency change. Frequency of MTP is
the same under CDVFS, TDVFS and [16]. This also
happened in MB except for 4% of the total time that
frequency of CDVFS is lower than that of TDVFS and [16].
This phenomenon shows that these approaches for MB and
MTP on frequency adjustment of memory have almost the
same effect. Runtime frequency of BS and MT in Fig. 4
and in Fig. 7 shows that CDVFS is slightly lower than
those under TDVFS and [16]. The frequency of FWT in
Fig. 5 under CDVFS is slightly higher than that of TDVFS
and [16]. These phenomena indicate these approaches can
adapt and meet the demand on frequency of the BS-type,
MT-type program and FWT-type program. At the batch
program in Fig. 3, the frequency obtained by CDVFS
changes frequently while the frequency got by TDVFS and
[16] is constant. The time of frequency overlapped
accounts for about 14.54% of the total time compared with
the TDVFS and [16]. The time that is not overlapped
accounts for most of the time and the frequency of CDVFS
is lower than that of TDVFS and [16] in this period. Thus it

1

Fr
eq

ue
nc

y(
M

H
Z)

500 1000 1500 2000 2500 3000 3500

400

500

600

700

800

900

000

500 1000 1500 2000 2500 3000 3500

800
820
840
860
880
900
920
940
960
980

1000

(b)Memory

Time(MS)

 CDVFS
 TDVFS
 [13]
 [16]

(a)GPU

Fig. 4. Frequency variation of BS

420 440 460 480 500 520 540 560

400

500

600

700

800

900

1000

420 440 460 480 500 520 540 560

900

920

940

960

980

Fr
eq

ue
nc

y(
M

H
Z)

(b)Memory

 CDVFS
 TDVFS
 [13]
 [16]

Time(MS)
(a)GPU

Fig. 5. Frequency variation of FWT

200 300 400 500 600 700

400

500

600

700

800

900

1000

200 300 400 500 600 700

400

500

600

700

800

900

1000

Fr
eq

ue
nc

y(
M

H
Z)

 Time(MS)
(b)Memory

 CDVFS
 TDVFS
 [13]
 [16]

(a)GPU

Fig. 6. Frequency variation of MB

150 300 450 600 750 900

400

500

600

700

800

900

1000

150 300 450 600 750 900

500

600

700

800

900

1000

Fr
eq

ue
nc

y(
M

H
Z)

(b)Memory
Time(MS)

 CDVFS
 TDVFS
 [13]
 [16]

(a)GPU

Fig. 7. Frequency variation of MT

A Modeling Approach for Energy Saving Based on GA-BP Neural Network

 1296 │ J Electr Eng Technol.2016; 11(5): 1289-1298

indicates that batch has the same effect as BS under the
CDVFS. This is because these approaches have different
principles in adjusting frequency of memory. From above
results got by all types of applications, we can see that
these approaches can scale frequency of memory at
runtime.

Fig. 9 shows energy consumption of TDVFS, [13] and
[16] compared with CDVFS, and we use ratio to express.
The ratio of positive value shows that the approach
consumed more energy than CDVFS and the negative
value illustrate opposite result. From the figure, we can see
these approaches have different behaviors of energy
consumption. TDVFS respectively consumes more energy
about 5.32%, 1.53% and 2.72% than that of CDVFS in
Batch, BS and MT. It saves energy about 2.58% compared
with that of CDVFS in FWT and has almost equal energy
compared with that of CDVFS in MB and MTP. [13]
respectively consumes more energy about 7.88%, 2.7%,
4.66%, 9.16% and 1.62% than that of CDVFS in Batch, BS,

FWT, MT and MB. It has equal energy compared with that
of CDVFS in MTP. [16] respectively consumes more
energy about 36.74%, 1.73%, 38.72%, 2.78% 9.5% and
30.92% than that of CDVFS in Batch, BS, FWT, MT, MB
and MTP. Consequently, CDVFS respectively gets average
energy saving of 2.38 %, 8.68%, 40.14% than TDVFS,
[13] and [16]. The average total energy saving is 17.06%.
The main reason lies in that [13] and [16] only take single
component into consideration, ignoring energy saving of
other component. TDVFS considers energy saving of both
GPU and memory, but each component has its own principle
and ignores the relationship of energy saving between them.
CDVFS treats GPU and memory as potential energy saving
components and it finds the relationship that can get better
energy saving effect between them.

For DVFS, the performance should be also taken into
consideration. Fig. 10 is the performance of TDVFS, [13]
and [16] compared with CDVFS, and we also use ratio to
express. The meaning of negative and positive value is the
same as described in Fig. 9. From the figure we can see the
time for CDVFS is more than that of TDVFS, [13] and [16].
CDVFS consumes more time than TDVFS in Batch, BS,
FWT, MT and MB respectively with 1.34%, 2.32%, 1.1%,
0.34% and 0.12%. It consumes almost equal time as
TDVFS in MTP. It also spends more time than [13] in
Batch, BS, FWT, MT and MB respectively with 1.65%,
2.62%, 1.39%, 0.46% and 0.38%. It has almost equal time
compared with [13] in MTP. [16] spends less time than
CDVFS in Batch, BS, FWT, MT, MB and MTP
respectively with 2.79%, 2.29%, 2.3%, 0.34%, 1.42% and
0.8%. CDVFS respectively consumes more time than
TDVFS, [13] and [16] in average with 1.74%, 2.17%,
3.32%. The average total time saving is 2.41% compared
with CDVFS. This is because CDVFS scales both
frequency of GPU and memory to save energy and then
slow down the speed of each component. From the
experiment, we can see that the performance loss is kept at
acceptable value, which shows the CDVFS is effective.

7. Conclusion

General-purpose computing based on GPU attracts

widely attention from researchers for its performance and
energy efficiency. In order to better tap the energy saving
effect of GPU in the general-purpose computing, we propose
a modeling approach for energy saving called CDVFS. It
has following advantages over existing approaches.
Firstly, our approach is easy to be understood. Secondly, it
can well reflect the demand on frequency of program.
Finally, CDVFS can get average energy savings of
17.06% compared with previous works within acceptable
performance loss. Experiments validate our model for
energy saving and the results indicate that our approach is
effective and the assumption is reasonable.

480 500 520 540 560 580 600 620

450

600

750

900

480 500 520 540 560 580 600 620

900

920

940

960

980

Fr
eq

ue
nc

y(
M

H
Z)

(a)GPU
Time(MS)

(b)Memroy

 CDVFS
 TDVFS
 [13]
 [16]

Fig. 8. Frequency variation of MTP

Batch BS FWT MT MB MTP
0

10

20

30

40

R
at

io
(%

)

 TDVFS
 [13]
 [16]

Fig. 9. Energy comparison

Batch BS FWT MT MB MTP

-3

-2

-1

0

1

R
at

io
(%

)

 TDVFS
 [13]
 [16]

Fig. 10. Performance comparison

Junke Li, Bing Guo, Yan Shen, Deguang Li and Yanhui Huang

 http://www.jeet.or.kr │ 1297

Acknowledgements

This work was supported in part by the State Key

Program of National Natural Science Foundation of China
under Grant No. 61332001, the National Natural Science
Foundation of China under Grant No. 61272104 and
61472050, the Applied Basic Research Program of Sichuan
province under Grant No. 2014JY0257, 2015GZ0103 and
2014-HM01-00326-SF. We also acknowledge group of
embedded real-time system for their effective advice and
constructive suggestions.

References

[1] Top 500 Supercomputer Sites Webpage, November
2015. http://www.top500.org.

[2] V. Hanumaiah and S. Vrudhula, “Temperature-aware
DVFS for hard real-time applications on multicore
processors,” IEEE Trans.Computers., vol. 61, no. 10,
pp. 1484-1494, Oct.2012.

[3] T. Horvath, T. Abdelzaher, K. Skadron, et al.
“Dynamic Voltage Scaling in Multitier Web Servers
with End-to-End Delay Control,” IEEE Trans. Com-
puters., vol. 56, no. 4, pp. 444-458, Apr. 2007.

[4] J.Zhan, N.Stoimenov, J.Ouyang, et al, “Optimizing
the NoC Slack Through Voltage and Frequency
Scaling in Hard Real-Time Embedded Systems,”
IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems., vol. 33, pp. 1632-1643, Nov.
2014.

[5] Z. Zong, A. Manzanares, X. Ruan, et al. “EAD and
PEBD: two energy-aware duplication scheduling
algorithms for parallel tasks on homogeneous clusters,”
IEEE Trans.Computers., vol. 60, no. 3, pp. 360-374,
Mar.2011.

[6] Q. Wu, M. Martonosi, D. W. Clark, et al, “A dynamic
compilation framework for controlling microprocessor
energy and performance,” in Proc.micro, 2005, pp.
271-282.

[7] R. Kotla, S. Ghiasi, T. Keller, et al, “Scheduling
Processor Voltage and Frequency in Server and
Cluster Systems,” in Proc.IPDPS, 2005.

[8] Z.Zhang, J.M.Chang, “A cool scheduler for multi-
core systems exploiting program phases,” IEEE
Trans. Computers., vol. 63, no. 5, pp. 1061-1073, May.
2014.

[9] X.Chen, C.Xu, R.P. Dick, “Memory access aware on-
line voltage control for performance and energy
optimization,” in Proc.ICCAD, 2010, pp. 365-372.

[10] K.Choi, R.Soma, M.Pedram, “Fine-grained dynamic
voltage and frequency scaling for precise energy and
performance tradeoff based on the ratio of off-chip
access to on-chip computation times,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and

Systems., vol. 24, no. 1, pp. 18-28, Jan.2005.
[11] J. Kim, S. Yoo, C. M. Kyung, “Program phase-aware

dynamic voltage scaling under variable computa-
tional workload and memory stall environment,”
IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems., vol. 30, no. 1, pp. 110-123,
Jan.2011.

[12] S. Kim, H. Eom, HY. Yeom, et al, “Energy-centric
DVFS controlling method for multi-core platforms,”
Computing, vol. 96, no. 12, pp. 1163-1177, Dec.2014.

[13] G. Dhiman and T. S. Rosing, “Dynamic voltage
frequency scaling for multi-tasking systems using
online learning,” In Proc. ISLPED, 2007, pp. 207-
212.

[14] K. Li, X. Tang, K. Li, “Energy-efficient stochastic
task scheduling on heterogeneous computing systems,”
IEEE Trans. Parallel and Distributed Systems., vol.
25, no. 11, pp. 2867-2876, Nov.2014.

[15] H. David, C. Fallin, E. Gorbatov, et al, “Memory
power management via dynamic voltage/frequency
scaling,” In Proc.ICAC, 2011, pp. 31-40.

[16] Q. Deng, L. Ramos, R. Bianchini, et al, “Active low-
power modes for main memory with memscale,”
IEEE Micro., vol. 32, no. 3, pp. 60-69, May/June.
2012.

[17] S.Williams, A.Waterman, D.Patterson, “Roofline: an
insightful visual performance model for multicore
architectures,” ACM. Commun., vol. 52, no. 4, pp.
65-76, Apr.2009.

[18] S. Ryoo, CI. Rodrigues, S. S. Baghsorkhi, et al.
“Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA,” In
ACM Proc. PPoPP, 2008, pp. 73-82.

[19] Intel Corp., Intel-64 and IA-32 Architectures Soft-
ware Developers Manual, vol. 3B: System Program-
ming Guide, Part 2, Nov. 2008.

[20] A. Sarajedini, R. Hecht-Nielson, “The best of both
worlds: Casasent networks integrate multilayer per-
ceptrons and radial basis functions,” in Proc.IJCNN,
1992, pp. 905-910.

[21] H. Nagasaka, N. Maruyama, A. Nukada, et al,
“Statistical power modeling of GPU kernels using
performance counters,” in Proc. Green Computing,
2010, pp. 115-122.

Junke Li He received his BS degree in
Computer Science from the Henan
Polytechnic University in 2010, and he
received his MS degree in Computer
Science from Southwest University in
2013. He is currently a PhD candidate
in the School of Computer Science,
Sichuan University. His research

interests include parallel computing and green computing.

A Modeling Approach for Energy Saving Based on GA-BP Neural Network

 1298 │ J Electr Eng Technol.2016; 11(5): 1289-1298

Bing Guo He received his BS degree
in Computer Science from the Beijing
Institute of Technology in China, and
MS and PhD degrees in Computer
Science from the University of Elec-
tronic Science and Technology of
China, China, in 1991, 1999, and 2002,
respectively. He is currently a Pro-

fessor in the School of Computer Science at the Sichuan
University, China. His current research interests include
embedded real-time system and green computing.

Yan Shen She received her MS degree
in Mechatronics Engineering and PhD
degree in Measuring and Testing Tech-
nology and Instruments from University
of Electronic Science and Technology
of China in 2001 and 2004 respectively.
Currently she is a Professor in the
Control Engineering College, Chengdu

University of Information and Technology. Her main
research interests include distributed measurement systems,
embedded system development, wireless sensor networks,
robotics.

Deguang Li He received his BS degree
in Computer Science from the PLA
Information Engineering University, in
2010, and he received his MS degree in
Computer Science from Northeastern
University, in 2012. He is currently a
PhD candidate in the School of Com-
puter Science, Sichuan University. His

research interests include embedded real-time system and
green computing.

Yanhui Huang He received his BS
and the MS degree in Radio Elec-
tronics and Computer Science from
Sichuan University in 1997 and 2002
respectively. Currently he is a lecture
in the school of computer science at
Sichuan University. His current
research interests include embedded

real-time system and green computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX3:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [545.000 394.000]
>> setpagedevice

