
J Electr Eng Technol.2016; 11(5): 1147-1152 
http://dx.doi.org/10.5370/JEET.2016.11.5.1147 

 1147
Copyright ⓒ The Korean Institute of Electrical Engineers 

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ 
licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Adaptive Temperature Control System for LED Array Systems 
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Abstract – In this paper, an adaptive temperature control system for plant cultivation is proposed. 
The proposed method analyzes the internal temperature of red and blue LED arrays and determines the 
optimal fan speed for various temperature conditions. The adaptive control system is then implemented 
based on the analyzed data. Hence, the proposed system can better reduce the fan control power and 
noise than the conventional method. In the experimental results, the error between the simulation 
model and real system was at most 2.96%. The proposed method reduced the power consumption to 
60% that of the conventional system when the target temperature was 38 °C.  
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1. Introduction 
 
A light emitting diode (LED) emits light by directly 

converting electricity into light, and hence, it has more 
advantages than other types of light sources such as cold 
cathode fluorescent lamps (CCFLs) and high-intensity 
discharge (HID) lamps [1]. First, LEDs have better 
efficiency than other light sources. For example, an HID 
lamp needs 35 W to produce the same amount of light as 
LEDs that only consume 21W, which is 60% of the power 
consumed by an HID lamp [2]. The other advantage of 
using LEDs is that their brightness can be easily controlled. 
For example, CCFL must consider the temperature during 
operation, and hence, the controllable range of the brightness 
is significantly limited at high temperatures. On the other 
hand, LEDs can be easily controlled using a high-current 
rheostat and PWM modulation. Additionally, the wide 
wavelength of LEDs is one of the reasons that they are 
now widely used. RGB LEDs can cover the full color 
spectrum, and therefore are widely used in various 
applications such as sensory lighting, display devices, and 
grow light systems for plants, animals, and insects.  

However, LEDs radiate a large amount of heat energy 
when emitting light. When an LED operates, 80% - 88% 
of the total electricity is converted into heat energy, and 
this reduces the light efficiency and device stability 
significantly. Fig. 1 shows the heat transfer problem in an 
LED system. The heat produced from the LEDs transfers 
through the fixtures, and this heat can affect the control 
units, including the microcontroller, when the LEDs 
operate. Therefore, the heat degrades the performance of 
the system and causes malfunction, thereby eventually 
reducing the life of the LED system. 

In order to reduce this problem, we propose a novel 
temperature control system that can adaptively control the 
temperature of the LED arrays. The proposed system uses 
multiple cooling fans, and the speed of the cooling fans is 
adaptively controlled based on the system temperature, 
thereby enhancing the system stability effectively. To 
achieve this, the proposed method analyzes the internal 
temperature of the LED arrays. The data from this analysis 
is used to determine the optimal fan speed for various 
temperature conditions. The adaptive control system is 
implemented using the analyzed data. Hence, the proposed 
system can optimally decrease the fan noise and control 
power required with respect to a conventional system using 
a fan with a fixed speed. 

 
 

2. Proposed Algorithm 
 
To maintain the optimal temperature of the LED array, 

the proposed multiple-fan system design considers various 
physical parameters. The overall block diagram of the 
proposed system is shown in Fig. 2. First, the LED 
structure for the target system is determined. Here, various 
parameters for the target LED system such as LED type, 
total power, radiant intensity, and forward voltage are 
extracted. Next, the target system is modelled using the 
extracted parameters. In the second block, the optimal 
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Fig. 1. Heat transfer problem in an LED system 
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speed of multiple fans is calculated based on simulated 
temperatures output by the optimal model for the target 
LED system. In this case, the optimal fan speed is 
computed for different fan speed conditions. After the 
optimal fan speed is determined, a mapping database is 
generated. Using this database, the proposed system 
adaptively controls the fan speed considering different 
environmental conditions, thereby reducing the internal 
temperature and noise artifacts. 

 
2.1 Target LED system specification 

 
The target LED system is composed of total 504 units of 

IWS-L5056-UR-N3 SMD5050 LEDs from ITSWELL [4]. 
Red and blue LEDs are used in this system, but their 
brightness and power consumption are different. Table 1 
lists the parameters of the red and blue LEDs. The forward 
voltages of the red and blue LEDs are 2.4 and 3.6 V, 
respectively, when the forward current is 60 mA. Therefore, 
the total power consumption of the system is 125 W, and 
the system can radiate a large amount of heat energy. For 
example, the radiant intensities of the red and blue LEDs 
are 22 mW/sr when the forward current is 60 mA. Hence, 
the heat loss of the red and blue LEDs is 84.7% and 89.8% 
of the total power, respectively. This could cause severe 

problems for the physical devices such as unstable 
operation of the control module or lifetime degradation of 
the overall system [5].  

After determining the target LED arrays, a schematic of 
an equivalent circuit model (ECM) of the target system is 
designed to analyze the electrical characteristics. Fig. 3 
shows the ECM of the target system. The target system is 
driven by a DC 12 V input voltage, and the LED arrays are 
controlled by a pulse width modulation (PWM) method 
based on metal-oxide semiconductor field-effect-transistor 
(MOSFET) driving circuits. After that, a heat transfer 
model is implemented using the electrical parameters of 
the ECM in the next step.  

 
2.2 Parameter analysis-based optimal speed estimation 

 
The first module is the parameter analysis-based optimal 

speed estimation, as shown in Fig. 2. The heat transfer 
model is generated considering several parameters for the 
heat characteristics of the system. To do this, the materials 
of the LEDs and PCB board, mass, heat level, and total 
area are estimated. In this case, the room temperature is set 
to 20 °C, which is fixed in all simulations. 

To generate the target model, MATLAB Simulink is 
used. Specifically, ideal temperature source blocks and 
convective heat transfer blocks are used, and sensors are 
connected to fetch system temperatures in real time. In this 
case, the environmental variables for the LED system 
model were decided by the parameters extracted from the 
target LED arrays. Table 2 shows the variables used such 
as mass and heat transfer coefficients (HTC). First, the 
initial model for the room temperature environment is 
generated. The second step is to generate the temperature 
model with the radiated heat when operating the LED 

Mass

Parameter analysis-based
optimal speed estimation

Adaptive temperature 
control system

Multiple fans

Target LED system

 
Fig. 2. Overall block diagram 

Table 1. Parameters of the red and blue LEDs 

 
 

 
Fig. 3. Equivalent circuit model of the target LED system 
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arrays. Heat source blocks and gain blocks are connected to 
produce the heat for the LEDs. The final step is to operate 
the multiple fans connected in the heat source block, 
thereby modifying the temperature. In this case, to analyze 
the temperature variation and determine the optimal speed, 
different speeds of multiple fans are considered.  

 
2.3 Adaptive temperature control system 

 
The second module is the adaptive temperature control, 

as shown in Fig. 2. Fig. 5 shows that the fans are controlled 
using a database that contains the optimal speeds given the 
temperature determined by the previous block. The fan 
speed stored in the database is one that will maintain the 
target temperature in the device. Fan specifications are 
listed in Table 3.  

First, the mapped relationship between temperature and 
fan speed is used in the control system. The proposed 

system uses an ATmega 2560 microprocessor [7] to 
generate the control signal. In this system, the fast PWM 
mode, which generates two interrupts (start and end points) 
is used. Specifically, the fast PWM mode uni-directionally 
increases the counter and generates the end point interrupt 
signal when it approaches the maximum count number 
TOP. If the TOP value is changed, the PWM frequency can 
also be dynamically changed, and hence, TOP should be 
calculated to generate the target PWM frequency. TOP is 
defined as follows [8]: 
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Table 2. Parameters used in the simulation model 

Parameters Value Unot 
Total power of LEDs 125 W 

Mass 0.1 Kg 
Specific heat 1005.4 J/kg*K 

HTC 200 W/m2*K 
Surface area 1 m2 

Ambient temperature 20 oC 
Fan air displacement 0.00015 Kg/rev 

 
Table 3. Fan specifications 

Fan specifications Value 
Fan size 80*80 mm2 

Max. speed 1800 RPM 
Min. speed 600 RPM 

PWM frequency 21~27 kHz 
 

 
Fig. 4. Block diagram of the parameter analysis-based 

optimal speed estimation 

Temperature sensing in 
multiple cases

Fan speed decision

PWM level calculation

Fan Control

Multiple fans

Parameter analysis-based
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Fig. 5. Block diagram of the adaptive temperature 

 
Microcontroller

Multiple fans  
Fig. 6. Prototype of the proposed control system 
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where OCnxPWMf  denotes the target PWM frequency and 
_ /clk I Of  denotes the default frequency of the ATmega 

2560 processor. Hence, we can obtain TOP when the PWM 
mode is operated in the typical mode (N = 1). 

Next, in order to determine the starting point in the 
timing diagram, the operation conditions register (OCR) 
should be determined. If the OCR is determined, the 
starting point is also known, thereby directly controlling 
the PWM duty. OCR is defined as follows: 

 

  (3) 

 
If the current temperature currentT  is lower than the 

lowest temperature bound minT , fan speed is decided by 
the product of CTmin  and TOP. Constant CTmin  is the 
minimum speed at which the fan motor can run. It ranges 
from 0 to 1. If the current temperature is higher than the 
highest temperature bound, a 100% duty ratio is returned 
by the following equation. Otherwise, OCR is calculated 
using the ratio of currentT  and maxT . 

 
 

3. Experimental results 
 
The performance of the proposed simulation model and 

implemented prototype system were evaluated. The 
difference between the simulation model and real system 

was also calculated. In addition, the proposed system was 
compared with a conventional LED control system that 
could not adaptively control the temperature. Fig. 6 shows 
the prototype of the proposed control system. It consists of 
504 LED units, two cooling fans for rapid heat emission, 
and a protective case. For the control unit, ATmega 2560 
microprocessors and MOSFET-based driving circuits 
were used. We measured temperatures at several vertical 
and horizontal distances from the middle point of the 
LED arrays, as shown in Fig. 7(a) (spots 1, 2, and 3). The 
temperatures at different distances (3 and 10 cm) were 
measured for 10 min at each spot. The DS18B20 
temperature sensor [9], which can be operated from −55 to 
+125 °C, was used to measure the temperature in real time. 
The temperature sensor had an error of ±0.5 °C, when the 
surrounding temperature was from −10 to +85 °C. In 

 
Fig. 7. Temperature measurement positions 

  
(a) 

 
(b) 

Fig. 8. Simulink schematics and experimental results: (a) LED system without the proposed temperature control system and 
(b) LED system with the proposed temperature control system 
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addition, the proposed LED system had different brightness 
conditions (50% and 100% PWM duty cycle). The room 
temperature was set to 20 °C and used as a reference. A 
model with heat source blocks to create heat from the LED 
array was simulated. A block diagram of the model for the 
LED array device is shown on the left side of Fig. 8(a), 
and its simulation result is shown on the right side of Fig. 
8(a). The average temperature was 58.37 °C when the 
temperature was steady-state. Finally, the experimental 
results of the proposed system are shown in Fig. 8(b). The 
proposed system needed about 80 seconds to attain steady-
state. At this point, the fans started to radiate heat. When 
the fan speed was changed from 800 to 1800 revolutions 
per minute (RPM), the temperature changed from 42.1 to 
35.3 °C.  

Using the simulation results, the real LED system 
prototype was developed to maintain the target temperature. 
The LED array module was attached to a metal plate and 
two cooling fans were fixed under the plate. Using this real 
LED system, we measured the temperatures for different 
fan speeds and LED brightnesses. In this case, the average 
room temperature of the experimental environment was 
20.2 °C. Fig. 9(a) shows that the conventional method 
without multiple fans maintained a temperature of almost 
60 °C while the conventional method using the maximum 
fan speed preserved a temperature of almost 35 °C. On the 
other hand, the proposed system could adaptively change 
the speed of the multiple fans to maintain the target 
temperature. In this case, the temperature dropped from 
42.7 to 35.93 °C when the fan speed was changed from 800 
to 1800 RPM. Fig. 9(b) shows the error between the 
proposed simulation model and real system. The minimum 
error of the simulation was 0.07% and the maximum error 
was 2.96%. 

Lastly, we evaluated the temperature and power 
consumption of the proposed method and conventional 
method in which the fan speed is fixed to maximum, as is 
typical when multiple fans are used [10, 11]. In order to 
understand the relationship between the fan speed and 
power consumption, the affinity law [12] was used. The 

normalized power consumption was calculated as follows:  
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where 1  P  and 2P  denote the power required to rotate 
the motor, 1 2andN N  denote the fan speeds, and 

1 2andD D  denote diameters of the fans for the proposed 
and conventional methods, respectively. According to (4), 
the power is proportional to the cube of the fan speed. In 
addition, the power is proportional to the cube of the fan 
diameter according to (5). In the experimental results, we 
assumed that the power consumption of a fan motor was 
normalized from 0 to 1, where 0 is the minimum speed 
needed to drive the motor and 1 is 1800 RPM, as shown in 
Fig. 9(c). If we drive the fans at a fixed fan speed of 1800 
RPM, the normalized power consumption is fixed at 1, 
0.77, and 0.58 when the fan diameter is 1.2, 1.1, and 1, 
respectively. In addition, the power consumption increased 
exponentially when the fan speed was increased. Therefore, 
the proposed control system required 1200 RPM and could 
reduce the unnecessary power consumption by 60% when 
compared with the conventional method using the 
maximum fan speed at a target temperature of 38 °C. 

 
 

4. Conclusion 
 
This paper proposed a novel LED control system that 

can adaptively control LED temperature. To achieve this, 
the proposed method analyzes the LED array temperature 
and extracts data for the optimal fan speed for different 
environmental conditions. Based on this data, the optimal 
control system is implemented. Therefore, the proposed 
method reduces the fan power consumption and noise 
compared with the conventional method. In the experimental 

 
(a)                              (b)                                 (c) 

Fig. 9. Experimental results at various fan speeds: (a) difference between the proposed and conventional methods in the 
simulation model (conventional methods (1) without multiple fans and (2) using the maximum fan speed); (b) 
difference between the simulation model and real system, and (c) power consumption for various fan diameters  
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results, the error between the simulation model and real 
system was acceptable, and the power consumption of the 
proposed method was 60% lower than the conventional 
system when the target temperature was 38 °C.  
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