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Abstract 
 

This paper proposes a privacy-preserving aggregation scheme based on the designed P-Gene 
(PAPG) for sensor networks. The P-Gene is constructed using the designed erasable 
data-hiding technique. In this P-Gene, each sensory data item may be hidden by the collecting 
sensor node, thereby protecting the privacy of this data item. Thereafter, the hidden data can be 
directly reported to the cluster head that aggregates the data. The aggregation result can then 
be recovered from the hidden data in the cluster head. The designed P-Genes can protect the 
privacy of each data item without additional data exchange or encryption. Given the flexible 
generation of the P-Genes, the proposed PAPG scheme adapts to dynamically changing 
reporting nodes. Apart from its favorable resistance to data loss, the extensive analyses and 
simulations demonstrate how the PAPG scheme efficiently preserves privacy while 
consuming less communication and computational overheads. 
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1. Introduction 

A wireless sensor network is a collection of low-cost, small-size sensor nodes for 
sensing certain conditions or events. Given that sensor networks can sense the physical world 
and transmit their sensory data without any infrastructure, they have broad application 
prospects, such as in monitoring hospitals and critical facilities [1]. However, sensor nodes 
have a limited energy supply; therefore, in-network data aggregation by which sensors 
collaborate on in-network processing to reduce the amount of raw data has been widely 
adopted to prolong the system lifetime [2]. 

When sensor networks monitor the surrounding environment, the data produced by each 
sensor node must be known only to itself to ensure data privacy. Without proper privacy 
protection, sensor networks have impractical applications in civilian areas because the 
participating parties may disallow the tracking of their private data. Therefore, the privacy of 
each sensory data must be preserved during the data aggregation process [3]. 

However, data aggregation and data privacy protection contradict each other. To achieve 
data aggregation, any aggregator must view each data item they process in plaintext to prevent 
such items from being encrypted at all times, which can lead to data privacy violation. 
Therefore, end-to-end data encryption, a well-known security method, is inapplicable in this 
context. A new method that specifically addresses such contradiction must be devised. The 
existing approaches suffer either from low resistance to nodes, high communication overhead, 
high computational overhead or low adaptability to unreliable channels [3–17]. (Section 2 
presents an in-depth discussion of related studies.) Therefore, in this paper, we revisit the 
aforementioned problem and then propose a scheme based on a newly designed data-hiding 
technique.  

Data-hiding techniques can ensure data privacy and have been applied for aggregating 
private data [4, 7, 10]. When a sensor node has sensory data to report, the data with one or 
more secret items are hidden, and then the sensor node sends the hidden data instead of the 
original one. In this way, the other nodes/outsiders cannot obtain any private sensory data. 
However, obtaining the aggregation result remains an issue. To address this problem, a 
straightforward approach is to enable the secret data to be shared between the node and the 
base station (BS), and then allow the BS to recover the aggregation result. This method has 
been adopted in several existing works, such as the Fully-reporting Secret Perturbation-based 
Scheme (FSP)[10]. This method allows the BS to obtain the private data, but the aggregation 
result cannot be recovered within the network. Data loss may also affect the recovery of the 
aggregation result, and the BS cannot access the source information of the lost data.  

To address these problems, we propose a new distributed private aggregation scheme based 
on the constructed privacy-preserving gene (PAPG). Similar to existing solutions, PAPG 
adopts data hiding to achieve private data aggregation. However, our erasable data-hiding 
technique is more suitable than the existing methods. The main contributions of this study are 
outlined as follows: 

 (1) This study constructs the P-Gene, a new data-hiding carrier, and then proposes the 
erasable data hiding technique. Unlike other data hiding carriers, in our P-Gene, each node can 
hide its sensory data independently using some simple calculation operations. Then, the 
hidden data is sent to the intra-network aggregator without encrypting. The aggregator that 
implements the aggregating operation can also erase all the P-Genes without knowing them. In 
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this way, each private datum is protected, and the in-network aggregator can obtain the 
aggregation values of the original data without additional data exchange.  

(2) This paper proposes a method for secret P-Gene generation independent of 
cryptographic algorithms. In this method, each node independently and dynamically generates 
its P-Gene according to the dynamic reporting cluster members via some simple calculation 
operations. That is, during the generation of P-Genes, no extra message exchange is 
introduced even when some or all the network nodes are reporting. This method also 
demonstrates efficient communication and computation because of its simple and lightweight 
calculation operations. 

(3) Compared with existing distributed approaches, the proposed PAPG scheme can 
efficiently preserve data privacy with low power consumption. Compared with existing 
centralized approaches, the proposed PAPG scheme can efficiently adapt to unreliable 
channels and avoid the single point problem. Specifically, compared with our previous work 
[7], the newly proposed method can work with other secure data aggregation schemes to 
ensure data integrity because each node can send its hidden data to the cluster head (CH) 
without encryption. The PAPG scheme also has a highly efficient computation because this 
method does not depend on cryptographic algorithms after the initialization process following 
the deployment of the network. 

(4)  Extensive analyses and simulations reveal that the proposed scheme outperforms the 
existing private data aggregation schemes [4,7,10] in terms of private data protection and 
power consumption. The novel erasable data-hiding technique and hiding-data generation 
method are also useful for ensuring the data privacy of other distributed systems. 

The rest of this paper is organized as follows. Section 2 briefly reviews the related literature. 
Section 3 describes the system models, design goals, and basic idea of the erasable data-hiding 
technique. Section 4 defines the newly constructed P-Gene, its properties, and generation 
method. Section 5 elaborates the proposed PAPG scheme, while Sections 6 and 7 analyze its 
privacy-preserving and data aggregation efficacy, respectively. Section 8 evaluates the 
performance of the scheme. Section 9 concludes the paper. 

2. Related Work 
Many studies have been conducted on the privacy-preserving problem. According to whether 
the aggregation result could be retrieved in-network, all the private data aggregation schemes 
could be divided into two categories, namely, distributed and centralized, and they are 
analyzed in parts 2.1 and 2.2, respectively.   

2.1 Distributed private data aggregation scheme 
In the distributed private data aggregation scheme, nodes collectively retrieve the aggregation 
result in-network. Thus, this scheme can avoid the limitations of the centralized scheme such 
as data loss problem. However, this scheme still has weaknesses. 

The pioneering distributed private data aggregation schemes are the cluster-based private 
data aggregation (CPDA) scheme and the slice–mix–aggregate (SMART) scheme proposed 
by He et al. [4]. In [4], a data-hiding technique is designed based on the algebraic properties of 
polynomials, and then a CPDA scheme of three rounds of intra-cluster nodes interactions is 
proposed. In SMART, each node slices its sensory data into J pieces, and then distributes (J−1) 
of these pieces to its nearest (J−1) nodes for aggregation. However, the privacy efficacy of 
both CPDA and SMART is restricted by the communication overhead. For a certain node, if 
all its cluster members in CPDA or all its interacted neighbor nodes in SMART are 
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compromised, its private data will be disclosed. Although the privacy efficacy can be raised by 
expanding the cluster size or increasing the number of slices, doing so rapidly increases the 
communication overhead.  

Considering the message loss problem, Conti et al. proposed a robust privacy-preservation 
data aggregation scheme [5]. In this scheme, each pair of nodes establishes a twin key, and 
each node encrypts its sensory data by adding shadow values computed from the live twin 
keys it holds. Then, as the contribution of the shadow values for each twin key cancels each 
other out, the aggregation result is retrieved. Although this scheme can solve the message loss 
problem, the communication overhead remains expensive because each node within a cluster 
with size n has to send/receive n messages. Like Conti et al., Huang et al. proposed a scheme 
based on XOR and hash operation [6]. However, this scheme can only adapt to the scenario of 
fixed reporting nodes, while in reality, the reporting nodes can be changed dynamically.  

Zeng et al. proposed a scheme based on the designed P-function set [7], where cluster 
members are divided into several P-classes, and each node generates its P-function according 
to the P-class membership. Each node hides its sensory data through the P-function value and 
sends the result to the cluster head in which the intra-cluster aggregation result is retrieved. 
Unfortunately, this scheme cannot work with the secure data aggregation schemes providing 
data integrity. Besides, each node needs to encrypt the data sent to the cluster head, thereby 
generating high computation overhead.  

Jung et al. proposed a privacy-preserving data aggregation scheme based on the hop-by-hop 
and multi-polynomial encryptions [8]. This scheme can be used for additive and multiplication 
aggregation functions; but it suffers from high power consumption because each node needs to 
send several extra messages. 

2.2 Centralized private data aggregation scheme 

In the centralized private data aggregation schemes, the aggregation result can be retrieved 
only by the BS. Most of the centralized schemes adopt the idea of additively homomorphic 
encryption first proposed by Castelluccia et al. [9]. This idea is expressed as follows: each 
node b shares a secret data k with the BS and uses k to hide its sensory data d as (d+k) mod M 
(M is a system parameter), which is further aggregated along the way to the BS. When 
receiving all the data, the BS retrieves the aggregation result by subtracting all the secret data k. 
Schemes that implement this basic idea have the following limitations: (1) if only part of the 
nodes report, the IDs of the reporting nodes need to be reported; (2) when all the nodes report, 
although the node ID does not need to be reported in theory, if any message loss occurs, then 
the aggregation result cannot be recovered; (3) if the attacker obtains k and the range of the 
hidden data, then obtaining the range of the private sensory data is also possible [10]. Thus, 
Castelluccia et al. proposed an enhanced scheme where the parameter k is generated 
dynamically [11]. However, this scheme still suffers from problem (2) [10].  

Feng et al. also proposed a series of optimized schemes [10]. In the proposed FSP scheme, 
all the nodes are required to report their sensory data. However, plenty of extra communication 
overhead is introduced if fewer nodes exist to be reported. Thus, Feng et al. proposed the 
D-ASP scheme, where for a certain number of clusters, only partial cluster members report 
their data. For D-ASP, the communication overhead becomes unreasonable if plenty of nodes 
are reporting their IDs. Again, all these schemes suffer the message loss problem. 

Several works are based on the idea of privacy homomorphism (PH), an encryption 
transformation technique that enables direct computation of encrypted data [12]. Using the 
symmetric PH technique, Girao et al. [13] proposed a concealed data aggregation (CDA) 
scheme in which all nodes participating in the aggregation share a secret datum and each node 
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encrypts its own sensory data. The aggregator then determines the sum of the sensory data 
without decrypting each received datum. However, the private data of one node can be 
accessed by its neighbors. Zhou et al.[14] proposed a secure data aggregation method based on 
ECC encryption and divide-and-conquer method. Yang et al. [15] proposed privacy- 
preserving data aggregation scheme that employs the EC-EG homomorphism encryption 
algorithm to provide end-to-end data privacy. However, the computation overhead of these 
asymmetric cryptography-based schemes is heavy, especially compared with non-encryption 
based schemes.  

In the scheme proposed by Zhang et al. [16], the sensor nodes transmit a sample of the data 
complement to the BS. The BS then reconstructs a histogram of the original sensory data 
according to the negative samples. However, this scheme cannot provide accurate aggregation 
results. 

Groat et al. [17] proposed a k-indistinguishable scheme that obfuscates data by adding a set 
of camouflage values. However, the private data of all the nodes are disclosed if a threshold 
number of nodes are compromised; raising the threshold results in a rapid increase of the 
communication overhead.  

 Currently, the privacy-preservation problem has attracted growing attention in other 
domains, such as cyber-physical systems, smart grids, and cloud computing [18-23]. Zhang et 
al. [18] address the problem of the cyber-physical systems domain by using differential 
privacy. For smart grids, Shi et al. [19] proposed a diverse grouping-based aggregation 
scheme with error detection by using differential privacy technique in grouping-based private 
stream aggregation. Bao et al. [20] proposed a secure data aggregation scheme that can 
achieve differential privacy and fault tolerance simultaneously. There are also other 
differential privacy technique-based schemes [21-22]. However, these works do not yield 
accurate aggregation results. In the cloud computing domain, Fu et al. [23] proposed a privacy 
data query scheme that uses vector space model to support searchable encryption. However, 
this technique is still unsuitable for the present study. 

3. Assumptions and Design Goals 

3.1 System Model  
We consider static sensor networks composed of low-complexity sensor nodes, such as the 

Berkeley MICA mote, which has a 4 MHz processor and 4 KB RAM data storage. Therefore, 
each node has enough space to store bytes of information to protect its private data. The sensor 
nodes in a network are synchronized [24]. After network deployment, all sensor nodes form 
clusters [25], which are the minimum units for data aggregation. In a cluster, the CH 
aggregates the data of its cluster members. The role of CH may rotate among the cluster nodes 
according to appropriate criteria, such as remaining energy. The data aggregated by the CH are 
then further aggregated gradually as they are forwarded to the BS.  

This study focuses on additive aggregation function because many other aggregation 
functions, including average, count, variance, standard deviation, and any other moment of the 
measured data, can be reduced to this function [10]. Similar to other privacy-preserving data 
aggregation schemes, the PAPG scheme also assumes that each sensory datum is an integer 
ranging from 0 to an upper bound maxd . This assumption is reasonable because even if some 
sensory data are not integers in their original forms, they can still be transformed into integers. 
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3.2 Threat Model 
The attackers may launch various security attacks to the sensor networks. However, these 
attacks have no one-for-all solution. Therefore, this study separately investigates such attacks 
and then proposes attack-specific defense techniques. We assume that the attackers aim to 
obtain private sensory data, and we address the conflict between in-network data aggregation 
and data privacy preservation. Similar to [4, 7, 10], we adopt the honest-yet-curious threat 
model, in which sensor nodes may attempt to break privacy but faithfully follow the protocol 
specification during data aggregation. This model is considered appropriate because sensors 
that are deployed by a common authority fulfill a certain task and can be trusted to follow the 
protocol. To obtain the private sensory data of interest, the attackers may launch the following 
attacks: 

•Eavesdropping: The attacker may passively eavesdrop on the message transmissions in 
the network. 

•Node compromise: The attacker may capture sensor nodes and read out all of the stored 
data.  

•Node colluding: When compromising several sensor nodes, the attacker may combine all 
the information obtained from the compromised nodes to disclose the private data of the other 
sensor nodes.  

3.3 Security Assumptions 
In sensor networks, nodes always establish pairwise keys for confidential peer-to-peer 
communications. Given the rich literature on key management, this study does not investigate 
such topic. Three common security assumptions are as follows: ○1  two nodes can establish a 
pairwise key based on a key management scheme, ○2  any compromised node has no effect on 
the pairwise keys shared by other pairs of valid nodes, and ○3  the compromised node is 
eventually detected by most of its neighbors within a certain period. These assumptions are 
reasonable because, for example, the pairwise key establishment schemes in [26-27] can be 
used to achieve these assumptions. The watchdog mechanism or several other collaborative 
intruder detection and identification schemes [28-30] can be used to detect the compromised 
nodes. 

3.4 Design Goals 
The new privacy-preserving data aggregation scheme aims to achieve the following qualities: 
Data privacy: The sensory data collected by the sensor node must only be known to itself.  
Efficiency: The proposed scheme must be as energy efficient as possible because additional 
overhead will be introduced for privacy protection and the sensor node has constrained 
resources. 
Accuracy: The sensory data must have accurate aggregation results. 
Flexibility: The proposed scheme must be adapted to complex network conditions. Sensor 
networks are naturally prone to data loss because of the vulnerable wireless channel. Nodes 
may fail or sleep, and new nodes may be added when many invalid nodes are present.  

3.5 Basic Idea of Erasable Data hiding Technique  
This paper proposes the erasable data hiding technique to achieve the aforementioned design 
goals. As shown in Fig. 1 (1), in this technique, each cluster member hides its private data 
using a novel constructed P-Gene (Section 4), and then sends the hidden data to its CH. In this 
way, data privacy can be ensured during the communication process. As shown in Fig. 1 (2), 
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after receiving the reporting data of its cluster members without obtaining each P-Gene, the 
CH can erase all the P-Genes from the hidden data and obtain the aggregation result. This 
process imitates the irradiation of seven colorful lights (red, yellow, green, blue, pink, brown, 
and purple) on an object. Specifically, when each of these lights irradiates on an object, the 
color of the object changes and its real color is hidden. However, when all lights 
simultaneously irradiate on the object, the color of the object remains the same because mixing 
these lights produce a white light. 
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a
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(1) Random a node sa (1≤a≤m) hides its sensory data da by its P-Gene Ra. 
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 (2) At the CH, the P-Genes are erased and the aggregation results are recovered. 

Fig. 1.  Basic idea of erasable data hiding technique 

4. Preliminaries 
We use a cluster aC  with size n to elaborate our method, in which each sensor node has a 
unique intra-cluster ID that is selected from {1, … , n} for intra-cluster communication. Not 
all nodes may have data to report in each session, which is defined as the interval between two 
data reporting periods. aC′  denotes the set of reporting nodes with size m ( ≤m n ) in aC . To 
achieve private data aggregation, a novel P-Gene is constructed for sensory data hiding. To 
ensure that goals (1) to (3) can be achieved, some concepts and properties related to the 
P-Gene are specified as follows. 

Definition 1 (P-list and P-seed). P-list refers to the list of integers that are generated by 
node b ( )ab C′∈  for P-Gene generation. These integers are denoted as P-list { , }b

c ap c C′∈ , which 
satisfies 

( ) mod  
a

b
cc C

p U
′∈∑  = 0,                                                  (1) 

where maxU d n≥ × , maxd  is the upper bound of the sensory data, and n is the maximum cluster 
size. The length of U  is denoted as l bits. Each b

cp  named as P-seed is only shared between 
Nodes b and c.  

Definition 2 (P-Gene). The P-Gene of a random node b ( )ab C′∈  is denoted as bR  and 
( ) mod

a

b c
bc C

R p U
′∈

= ∑ (2). 

We obtain Property 1 from the aforementioned definitions. For ease of description, bd  
denotes the sensory data of b, while bD  denotes the hidden sensory data ( ) mod  b

bd R U+ . 
Property 1: 1) For a random cluster aC′ , ( ) mod

a

b
b C

R
′∈∑  0U = (3). 

2) If ( ) 1
a

b
b C

d U
′∈

≤ −∑  (4), then ( ( ))
a

b b
b C

d R
′∈

+∑  mod
a

b
b C

U d
′∈

= ∑  (5). 
Proof: 1) For each cluster member ab C′∈ , we have 
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( ) mod  
a

b
cc C

p U
′∈∑  = 0.                                                  (1) 

Therefore, ( ) mod
a

b
b C
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2) As
 maxU d n≥ × , and  ( ) 1

a

b
b C

d U
′∈

≤ −∑ ;  

then ( ( )) mod
a

b b
b C

d R U
′∈

+∑  
( )) mod

( ) mod ( ) mod

.

a a

a a

a
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b C b C
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b
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d R U

d U R U

d
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=
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Property 1 shows that for a random aC′ , the sum of all hidden sensory data  ( )b aD b C′∈  is 
equivalent to that of all original sensory data bd  under the modular addition operation. 

Numerical Example 1. We present a simple scenario where U=12626 and aC′ = {1, 2, 3} to 
illustrate property 1. Table 1 shows the private data and P-seeds of nodes 1, 2, and 3. Take 
Node 1 for example. According to the P-seeds in Table 1, Node 1 calculates its P-Gene as 
follows (the P-seeds related to Node 1 are underlined in Table 1): 

R1 = (3654+2379+4717) mod 12626=10750. 
Similarly, Nodes 2 and 3 obtain R2=11500 and R3=3002, respectively. Thereafter, 

(R1+R2+R3) mod 12626=0 satisfies Property 11), while (D1+D2+D3) mod12626 = (d1+d2+d3) 
satisfies Property 12). 

 
Table 1. P-seeds and sensory data of node b 

( bd : sensory data of node b; bR : the P-Gene generated by ode b; and bD : hidden sensory data of Node b) 
Node b P-seeds bd  bR  bD  
Node 1 {3654,2319,6653} 110 10750 10860 
Node 2 {2379,5114,5133} 69 11500 11569 
Node 3 {4717,4067,3842} 178 3002 3180 

5. PAPG 
This section presents PAPG, a distributive scheme that ensures data privacy in the 

additive data aggregation process based on the erasable data hiding technique. Fig. 2 shows 
the entire PAPG process. In this scheme, each node perturbs its private data via its P-Gene 
without additional data exchange, and the aggregation result can be recovered from the hidden 
data in the CH. To implement this method, before deploying the nodes, a random node b is 
preloaded with ○1  its ID b, and ○2  t degree polynomial functions T(x) and W(x), which satisfy the 
condition that the range of the coefficients are [0, U ′ ), where U ′  is a prime number with 
length ( )l L+  bits. T(x) is used for node b to generate the P-Gene bR , and W(x) is used to 
update the seeds.  
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Performed when the WSN is deployed or 
when nodes are added or deleted

 Initialization Process

Each node generates its P-Gene 
independently

Exchanging seeds for P-Gene generation

Each privacy data is protected by the node 
via its P-Gene, and then sent to the CH

The aggregation result is 
recovered by the CH

Data Reporting Process

Performed 
session by 

session

 
Fig. 2. PAPG process 

 
Sections 5.1 and 5.2 present detailed descriptions of the seed table initialization and 

maintenance and the data collection process, respectively. Table 2 presents the basic notations. 
Table 2. Basic notations 

Notatio
n 

Signification 

aC′  Set of reporting nodes in cluster Ca 
b

cr  
Secret seed for P-seed generation that is generated by node b and only shared between nodes c and b 

c
br  

Secret seed for P-seed generation that is generated by node c and only shared between nodes b and c 
b
cp  

Secret P-seed for P-Gene generation that is generated by node b and only shared between nodes b and c 
bd  

Original sensory data held by node b 
bR  

P-Gene held by node b 
bD  

Hidden sensory data held by node b 

5.1 Initialization Process for Seed Table Generation and Maintenance 
The seed tables are implemented in the following cases: 

CASE I: All sensor nodes are clustered after deployment. 
In this case, the process is performed only once as follows: 
Step 1 (seed exchange): Each node b randomly generates (n-1) data as seeds 

{ ( ,  1b
cr c b c≠ ≤ )}n≤ , where each (b

cr c ≠
 

,  1 )b c n≤ ≤  satisfies b
cr U ′< . As shown in Fig. 3, 

each encrypted b
cr ( ,  1 )c b c n≠ ≤ ≤  is sent to the corresponding cluster member c through the 

shared pairwise key Kb,c: ,
{ }

b c

b
c Kr . Similarly, node b receives seed (  and 1,2.. )c

br c b c n≠ =  from 
cluster member c. 

b

n-1 n2 ...1

,22{ }
b

b
Kr,11{ }

b

b
Kr

, 11{ }
b n

b
n Kr

−−

,
{ }

b n

b
n Kr

{ ( ,  1 )}≠ ≤ ≤b
cr c b c n

1,

1{ }
bb Kr 2,

2{ }
bb Kr

1,

1{ }
n b

n
b Kr

−

−
,

{ }
n b

n
b Kr

 

Fig. 3. Exchange of seeds between a certain node b and each of its cluster members 
( { ( ,  1 )}b

cr c b c n≠ ≤ ≤ : seeds generated by node b; (  and 1,.., )c
br c b c n≠ = : seeds generated by node 

c ; ,b cK : pairwise key shared between nodes b and c) 
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Step 2 (formation of seeds table): After the seed exchange, Table 3 shows that each node 
b initializes its seed table bT  that contains all of its generated seeds { ( ,  1b

cr c b c≠ ≤ )}n≤  and 
those that are received from the other cluster members { ( , )}c

b ar c C c b∈ ≠ .  

Table 3. Seed table bT  of node b 
(The seeds in the rectangular box represent those received from the other cluster members.) 

c 1 2 … n-1 n 
b

cr  1
br  2

br  … 1
b

nr −  b
nr  

c
br  1

br  2
br  … 1n

br
−  n

br  
 
CASE II: Node failure or compromise 

When node b is notified that cluster member c fails or has been compromised, node b 
deletes b

cr and c
br  from bT . 

CASE III: Some nodes have been added. 
When node b is notified that new cluster members have been added, for each added node 

d, node b generates Seed b
dr , which is then added to bT and sent to d: 

,
{ }

b d

b
d Kr . Similar to Case I, 

each added cluster member generates seeds for all other cluster members and then sends these 
seeds to the corresponding cluster members. Each added cluster member d also maintains its 
seed table dT for P-Gene generation. 

After this process, each pair of valid cluster members (b, c) only shares the two secret 
seeds, namely, { , }b c

c br r . 

5.2 Data-reporting Process 
In each data collection session, a random node collects sensory data, hides its data 

through its P-Gene, and sends the hidden data to its CH. The CH recovers the aggregation 
result after receiving all reports. For session s and aC′  with size m ( ≤m n ) (the set of reporting 
nodes in cluster aC ), only m≥3 is considered. If m＜3, each node slices and sends the data to 
its neighbors according to the SMART scheme [4], and none of the processes are repeated. 

Step 1 (Original sensory data perturbation): According to seeds { ( , )b
c ar c C c b′∈ ≠ }, a 

random node b obtains all the P-seeds{ ( , )}b
c ap c C c b′∈ ≠ , where each b

cp  is the lowest l bits of 
)b

cT r（ . Afterward, node b calculates the P-seed b
bp  as follows:  

,
( ) mod

a

b b
b cc C c b

p U p U
′∈ ≠

= − ∑ .                                                  (6) 

According to the corresponding seeds { ( , )c
b ar c C c b′∈ ≠ }, node b obtains all the P-seeds 

{ ( , )}c
b ap c C c b′∈ ≠ , which have the lowest l bits of )c

bT r（ . Thereafter, node b calculates its 
P-Gene bR  according to { ( ,c

b ap c C′∈  )}  as follows: 
( ) mod

a

b c
bc C

R p U
′∈

= ∑ .                                                           (7) 

Node b hides its sensory data bd  with bR  as ( ) modb b bD d R U= + (8), and then sends 
{ , }bD b  to its CH. 

Step 2 (Data aggregation for each cluster): For each cluster, the CH checks if all nodes 
have sent their data. 

(a) If so, CH calculates D= ( )
a

b
b C

D
′∈

∑ mod U (9), which is equivalent to
a

b
b C

d
′∈

∑ . CH then 

sends { , }D m  to the next hop node. 
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(b) Otherwise, by assuming that node c does not report, CH asks c to report. If node c 
responds, CH continues checking and calculating as (a). Otherwise, c is considered a failure, 
and CH sends this information to the cluster members. For each node b, go to Step 1. 

Theorem 1: If all reporting nodes in cluster aC  implement the data-reporting process of 
PAPG, that is, each node b in aC′  implements step 1 mentioned, and the CH implements step 2, 
then the CH can obtain the aggregation result of aC′ without knowing each P-Gene bR . 

Proof: In Step 1, the { ( )}b
c ap c C′∈  that is generated by each node b is a P-list because the 

P-seed b
bp  is generated according to all other P-seeds { ( , )}b

c ap c b c C′≠ ∈ . Therefore, we obtain 
the following: 

,

, ,

, ,

  ( ) mod  

 ( ) mod

[( ( ) mod ) mod ( ) mod ]mod

[(0 ( ) mod ( ) mod ]mod

0

a

a

a a

a a

b
cc C

b b
b cc C c b

b b
c cc C c b c C c b

b b
c cc C c b c C c b

p U

p p U

U p U U p U U

p U p U U

′∈

′∈ ≠

′ ′∈ ≠ ∈ ≠

′ ′∈ ≠ ∈ ≠

= +

= − +

= − +

=

∑
∑
∑ ∑
∑ ∑ ,                            

(10)
 

which satisfies the definition of P-list. Then, each bR  generated in Step 1 satisfies the 
definition of P-Gene. According to Property 1, by calculating equation (9), the aggregator can 
obtain 

a

b
b C

d
′∈

∑ , which is the aggregation result of all the reporting nodes aC′ . 

Note: During each data-reporting process, the P-seed b
bp  of a random reporting node b is 

dynamically generated according to the other generated P-seeds { ( , )}b
c ap c C c b′∈ ≠ that are 

generated according to the seeds of the reporting cluster member ( , )c
b ar c C c b′∈ ≠ . Therefore, 

(1) the PAPG scheme can adapt to dynamically changing reporting nodes, and (2) to achieve 
Theorem 1, each node b has no constraints on the seeds that are generated during the 
initializing process { ( ,  1b

cr c b c≠ ≤ )}n≤ . 
Numerical Example 2. We present a simple scenario to illustrate the aforementioned steps. 

Given s=2, U=31 (l=5), 1021U ′ = , 
2( ) 179 839T x x x= + , and {1,2,3}aC′ = . Table 4 shows the 

private data held by nodes 1, 2, and 3 and their corresponding seeds.  
Table 4. Seeds and sensory data held by cluster members in session 2 

Node Generated seeds Received seeds Original sensory data 
Node 1 1 1

2 312, 3}r r= ={  2 3
1 1{ 7, 23}r r= =  1 6d =  

Node 2 2 2
1 37, 398}r r= ={  1 3

2 212, 821}r r= ={  2 9d =  

Node 3 3 3
1 223, 821}r r= ={  1 2

3 33, 398}r r= ={  3 2d =  

 
1) According to { 1 1

2 312, 3}r r= ={ , 2 3
1 1{ 7, 23}r r= = }, node 1 calculates the following: 

1 2
2 2
1 2
3 2
2 2

1 2
3 2

1

( )mod (179 12 839 12)mod1021 109 (1101101) ,
( )mod (179 3 839 3)mod1021 44 101100) ,

( )mod (179 7 839 7)mod1021 350 (101011110) ,
( )mod (179 23 839 23)mod1021 657 1010010001

T r U
T r U

T r U
T r U

′ = × + × = =

′ = × + × = =

′ = × + × = =

′ = × + × = =

（

（ 2) ,

 
 
 
 
 
 
 

  

and then obtains the following: 
1 1 2 3
2 2 10 3 2 1 2 1 2(01101) (13) , (01100) 12, (11110) 30, (10001) 17p p p p= = = = = = = = . 

Therefore, 1 1 1
1 2 3( )mod 6p U p p U= − + = , 

and 1 1 2 3
1 1 1( )mod 22R p p p U= + + = . 
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Node 1 obtains 1 1 1( )mod (6 22)mod31 28D d R U= + = + =  and then sends {1, 28} to the CH. 
2) According to { 2 2

1 37, 398}r r= ={ , 1 3
2 212, 821}r r= ={ }, node 2 calculates the following: 

2 2
1 2
2 2

3 2
1 2
2 2
3 2

2

( )mod (179 7 839 7)mod1021 350 (101011110) ,
( )mod (179 398 839 398)mod1021 180 (10110100) ,

( )mod (179 12 839 12)mod1021 109 (1101101) ,
( )mod (179 756 839 756)mod1021 987 (1

T r U
T r U

T r U
T r U

′ = × + × = =

′ = × + × = =

′ = × + × = =

′ = × + × = = 2

           

111011011) ,

 
 
 
 
 
 
 

 

and then obtains the following: 
2 2 1 3
1 2 3 2 2 2 2 2(11110) 30, (10100) 20, (01101) 13, (11011) 27p p p p= = = = = = = = . 

Therefore, 2 2 2
2 1 3( )mod 12p U p p U= − + = , 

and 2 1 2 3
2 2 2( )mod 21R p p p U= + + = . 

Node 2 obtains 2 2 2( )mod (9 21)mod31 30D d R U= + = + =  and then sends {2, 30} to the CH. 
 

Cluster node： 21 3CH：

⇒
1

1{1, 28}D =
2

2{2, 30}D =

1 6d = 2 9d =

3
3 21D =
3 2d =

1 2 3( ) mod31 17D D D+ + =

1 2 3( ) 17d d d+ + =

=

3

 
Fig. 4. Sample PAPG collection process  

 
3) According to { 3 3

1 223, 821}r r= ={ , 1 2
3 33, 398}r r= ={ }, node 3 calculates the following: 

3 2
1 2
3 2

2 2
1 2
3 2
2 2

3

( )mod (179 23 839 23)mod1021 657=(1010010001)
( )mod (179 756 839 756)mod1021 987=(1111011011)
( )mod (179 3 839 3)mod1021 44=(101100) ,

( )mod (179 398 839 398)mod1021 180 (10

T r U
T r U
T r U

T r U

′ = × + × =

′ = × + × =

′ = × + × =

′ = × + × = = 2

   

110100)

 
 
 
 
 
 
 

 

and then obtains the following: 
3 3 1 2
1 2 2 2 3 2 3 2(10001) 17, (11011) 27, (01100) 12 (10100) 20p p p p= = = = = = = =， . 

Therefore, 3 3 3
3 1 2( )mod 18p U p p U= − + = , 

and 3 3 3 3
1 2 3( )mod 19R p p p U= + + = . 

Node 3 obtains 3 3 3 ( )mod (2 19)mod31 21D d R U= + = + =  and then sends {3, 21} to CH. 

As shown in Fig. 4, after obtaining the data of all its cluster members {1, 2, 3}, CH 
calculates (D1+D2+D3) mod 31=17, which is equivalent to 1 2 3( ) 17d d d+ + =  according to 
Property 1. Then, CH sends {17, 3} to the next hop node. 

Step 3 (Seeds updating): For each node b, each b
cr ( ,  1 )c b c n≠ ≤ ≤  is updated by b

cr ′ , which 

is the lowest l bit of )b
cW r（ , and then each c

br ( ,  1 )c b c n≠ ≤ ≤  is updated by c
br ′ , which is the 

lowest l bit of )c
bW r（ . 

6. Privacy-preservation Efficacy 
Pairwise keys are used in sensor networks for confidential peer-to-peer communications. In 

this study, we use pairwise keys only to distribute the seeds during the initialization process. In 
other distributed schemes such as CPDA, SMART, and PAPF, pairwise keys are used to 
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encrypt the data that are exchanged during the data-reporting process session by session. The 
following cases may disclose the encrypted communication link between nodes b and c: ○1  the 
attacker compromises node b or c, and ○2  the attacker obtains the pairwise key ,b cK that is 
shared between nodes b and c. Given that any compromised node does not affect the pairwise 
keys that are shared by other pairs of nodes [26-27], if node b is secure, then obtaining ,b cK is 
equivalent to compromising c. Therefore, only the node compromise attacker is considered. 

Given that the attacker may eavesdrop, compromise, and collude nodes as well as obtain the 
sensory data through some other ways aside from breaking the PAPG system, the 
privacy-preservation efficacy of PAPG is analyzed in Section 6.1 and then compared with 
related distributed works in Section 6.2.  

6.1 Privacy-preservation Efficacy Evaluation of PAPG 
With PAPG, a random node b uses its secret P-Gene bR  to protect its private data bd . The 

data that node b  sent to its CH is the hidden data bD ( ( ) modb b bD d R U= + (8)). Therefore, the 
outside eavesdropper, the other sensor node, or even the BS cannot obtain the private data 

bd when bR  cannot be obtained. As shown by Theorems 2 to 7, the attacker cannot easily 
obtain the P-Gene bR . Moreover, bR is afterward- and backward-secure according to 
Theorem 4. Therefore, the PAPG scheme can efficiently preserve data privacy. Given that the 
attacker may compromise the node, collude the compromised nodes, obtain the sensory data 
through some other ways aside from breaking the PAPG system, eavesdrop and perform a 
brute force attack on the obtained data, and eavesdrop along with the compromised node, 
Sections 6.1.1 and 6.1.2 analyze the PAPG scheme in detail. 
 
6.1.1 Analysis of Node Compromise Attack and Node Colluding Attack 

In sensor networks, the attacker may compromise a node. Thus, the attacker can read out all 
the data stored in this node. Moreover, when several nodes are compromised, the attacker may 
collude with these nodes to break the system. However, as shown in Theorem 3, in a certain 
Session 0s , a random sensory bd  is secure against (m-1) compromised reporting cluster 
members, where m is the reporting cluster members of that session. Even when the attacker 
has compromised more than (m-1) nodes, if the compromised reporting cluster members of 
node b are less than (m-1), then the attacker still cannot obtain bd . Furthermore, as proven in 
Theorem 3, even if the attacker compromised all the (m-1) reporting members of b in a certain 
Session 0s , in another Session 0s ′ , the attacker still cannot obtain the private data bd if the 

reporting nodes in Session 0s ′ are different from those in Session 0s . To obtain a random 
private data item of node b, the attacker must obtain its Seed Table bT . Thus, as proven in 
Theorem 2, the attacker must compromise all of its (n-1) cluster members. Finally, as proven 
in Theorem 4, even if the attacker obtains the sensory data through other ways aside from 
breaking the PAPG system, it has no use for the privacy data collected in the other sessions.  

Theorem 2: (1) A certain Seed table bT  belonging to node b is different from that of any 
other node, and bT  is not a subset of any other seed Tables. Thus, it is secure when any cluster 
member  ( )e e b≠  is compromised. (2) Seed table bT  is exposed only if node b is 
compromised or all the (n-1) cluster members of node b are compromised. 

Proof: For a certain node b, the exposure of bT means that all the Seeds in bT have been 
discovered by the attacker.  
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(1) Each node b generates Seeds { ( , 1,..., )}b
cr c b c n≠ = randomly and independently; thus, any 

other node cannot obtain{ ( , 1,..., )}b
cr c b c n≠ = . For a certain member e, as the Seeds sent from b 

to e are b
er , all the other Seeds are clearly confidential to e. In this case, bT  cannot include the 

other Seeds except e
br . Therefore, bT is certainly different from eT . Moreover, as the Seeds 

shared between bT  and eT  are only e
br and b

er , in compromising e, the attacker can only learn 
the Seed table of this node and cannot obtain the Seed table of node b. 

(2) As each pair of { , }b e
e br r is only shared by b and e, the attacker must compromise node e to 

obtain { , }b e
e br r . To obtain bT , the attacker must compromise all the other (n-1) cluster 

members.□ 
Theorem 3: In assuming that the adversary has obtained bD , to obtain the sensory data bd , 

the adversary must compromise all the (m-1) members of node b in aC′ . 
Proof: In PAPG, the data bD  sent to CH from node b is generated by ( ) modb b bD d R U= + . 

When the adversary has obtained bD , to obtain the sensory data bd , the adversary has to obtain 
the P-Gene bR . From the generation of bR , we find that to obtain bR , the adversary must obtain 
all the seeds that node b shared with the members in aC′ .  

From the proven process of Theorem 2, we find that each pair of { , }b e
e bs s is shared only by 

Nodes b and e. In addition, no relationship exists between { , }b e
e bs s and the other seeds. If node b 

is secure, then the attacker must compromise node e to obtain { , }b e
e bs s . Thereafter, to 

determine{ ( )}b
c as c C′∈  and { ( )}c

b as c C′∈ , the attacker must compromise all these corresponding 
nodes, which are { , }ac b c C′≠ ∈ . Thus, if the adversary only obtains bD , then to obtain bd , it 
must compromise all the (m-1) members of node b in aC′ . □ 

Therefore, if the compromised nodes are less than (m-1), the attacker cannot obtain any 
private data. If the compromised nodes are no less than (m-1), the probability that the attacker 
obtains the private data bd is 1 1 1

1 11
( )( )− − −

− −= −∑ c

cc

n n m m
n n cn m

q C C n n . 

Theorem 4: We assume that in a certain Session 0s , the adversary has obtained bd through 
a certain way aside from compromising the PAPG scheme and has obtained bD through 
eavesdropping. Despite this scenario, the adversary still cannot obtain the sensory data of b in 
other sessions. 

Proof: Under the attack assumption, as ( ) modb b bD d R U= + , the adversary can obtain the 
P-Gene bR of Session 0s . However, as bR  is the sum of several P-seeds, from bR , the attacker 
cannot obtain each of the secret P-seeds that generate bR . In addition, as each P-seed is updated 
in each Session, from the way that bR  is generated, we find that the bR used in a random 
Session ts  differs from those used in the other sessions. In addition, from the way that the 
seeds are updated, we find no relationship between the P-Genes used in different sessions. 
Thus, under this attack assumption, the adversary still cannot obtain the sensory data of b in 
other sessions, which means that the PAPG is secure under this attack assumption.  

 
6.1.2 Analysis of Eavesdropping Attack with Node Compromise Attack 

In PAPG, the hidden sensory data that each reporting cluster member sends to the CH are 
plain. Thus, the attacker can sniff all the reported hidden sensory data by eavesdropping. 
However, PAPG is efficient against this attack. In detail, as proven in Theorem 5, even if the 
attacker obtains all the hidden sensory data reported to the CHs, the attacker still cannot obtain 
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any private sensory data bd and any P-Gene bR  even through a brute force attack. Furthermore, 
as proven in Theorem 6, for a random cluster aC , even if the attacker compromised a random 
reporting cluster member, it still cannot guess any private sensory data bd . Finally, as proven 
in Theorem 7, for a random cluster aC , even if the attacker compromised the CH, it still 
cannot guess any private sensory data bd  even through a brute force attack. For ease of 
description, the ID of the CH is denoted as m , and all the reporting cluster members are 
denoted as{1,2,..., 1}m − .  

Theorem 5: The attacker cannot obtain any private sensory data bd or P-Gene bR from the 
reported hidden sensory data. 

Proof: (1) We assume that the attacker obtains a random ( , )b aD b C b CH′∈ ≠ by 
eavesdropping. As bD = ( ) b

bd R+ mod  U (8) and as bR is confidential to the attacker, the 
attacker cannot determine bd  from bD . In addition, as bd  is confidential to the attacker, the 
attacker cannot determine bR from bD . Furthermore, as the range of bR and bD  is [0, U], the 
range of bd is [0, maxd ], and maxU d n≥ × , guessing bd  from bD  or bR  from bD  is useless.  

(2) Furthermore, even if the attacker obtains all the reported hidden sensory data, it is 
helpless in obtaining bd . First, no relationship exists among the hidden data belonging to 
different clusters. Thus, in obtaining a random bd  collected by node ab C∈ , the attacker 
unnecessarily obtains the data belonging to the other clusters. Second, in cluster aC , the 
reported hidden data are { ( , )}b aD b C b CH′∈ ≠ , which are generated as follows: 

1 2 1
1 1 2 2 1 1( ) ; ( ) ; ; ( ) .m

m mD d R D d R D d R −
− −= + = + = +  

Thus, a random ( )b aD b C′∈ is independent of all the other { ( , , )}e aD e C e CH e b′∈ ≠ ≠ . Even if 
the attacker assigns each of the integers in the sensory data range [0, )maxd to bd  and obtains the 
corresponding bR from Equation (8), it cannot determine bd or bR from 
{ ( , , )}e aD e C e CH e b′∈ ≠ ≠ . In addition, although { ( , )}b aD b C b CH′∈ ≠  satisfies 

,
[( ) ( )]

a
b CH CHb C b CH

D d R
′∈ ≠

+ +∑  modU D=  and 
,

( )
a

bb C b CH
D

′∈ ≠∑  can be calculated, as the 
attacker cannot obtain D , CHd , or CHR  by eavesdropping, the values of D , CHd , and CHR  are 
still confidential to the attacker. 

We conclude that the attacker cannot obtain any private sensory data from the hidden 
sensory data. □ 

Theorem 6: If the attacker compromised a random reporting cluster member c of cluster aC  
and obtains { ( , )}b aD b C b CH′∈ ≠ , then it still cannot obtain the values of ( , )b ad b C b c′∈ ≠  and 

( , )b aR b C b c′∈ ≠ . 
Proof:  If the attacker compromised node c, then it can obtain cd  and cR . However, as each 

)( ab CbR ′∈ is independent with cR , obtaining bR  from cR  is useless. Similarly, obtaining bd  
from cd is useless. In addition, as 1 2 1

1 1 2 2 1 1( ) ; ( ) ; ; ( ) m
m mD d R D d R D d R −
− −= + = + = + , each 

bD  is independent of the others. Therefore, even if the attacker also obtains 
{ ( , )}b aD b C b CH′∈ ≠ , it is useless in obtaining any bR  or bd  from bD , cd , and cR .  □ 

Theorem 7: If the attacker compromised the CH of cluster aC  and obtains 
{ ( , )}b aD b C b CH′∈ ≠  by eavesdropping, then it still cannot obtain the values of 

( , )b ad b C b CH′∈ ≠  and ( , )b aR b C b CH′∈ ≠ . 
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Proof: (1) If the attacker compromised the CH of aC and obtains{ ( , )}b aD b C b CH′∈ ≠ , then 
it can obtain 

,a
bb C b CH

d D
′∈ ≠

′=∑ (11). Then, for 1,..., 2b m= − , the attacker can assign values to 
each bd  such as integer 1, and then it can obtain the value of 1md −  according to Equation (11). 
As more than one variable are found in Equation (11), various groups of values of 

( 1,..., 1)bd b m= −  satisfy Equation (11). In addition, as the elements in { ( 1,..., 1)}bD b m= −  are 
independent of each other and ( 1,..., 1)bR b m= − are confidential, according to Equation (11) 
and { ( 1,..., 1)}bD b m= − , only the value range of each ( 1,..., 1)bd b m= − , which may be shorter 
than the original value range [0, )maxd , can be determined.  

(2) In addition, according to 
,a

bb C b CH
d D

′∈ ≠
′=∑ (11) and { ( 1,..., 1)}bD b m= −  ( b b bD d R= + ), 

the attacker can obtain  
,

( ) mod
a

bb C b CH
R U

′∈ ≠∑ R′= (12). Similar to the equation in part (1), 
Equation (12) and the value of R′  are useless in determining the values of any 

( 1,..., 1)bd b m= − . Similarly, the value of any ( 1,..., 1)bR b m= −  cannot be determined.  
Thus, the values of ( 1,..., 1)bd b m= −  and ( 1,..., 1)bR b m= −  cannot be determined through 

this attack.  

6.2 Privacy-preservation Efficacy Comparison 
As analyzed in the preceding sections, PAPG can protect the private data of a random node 

b against outside eavesdroppers, other sensor nodes, and even the BS efficiently. In addition, 
as the hidden data that each node sends to its CH is in plain text, PAPG can work with the other 
secure data aggregation schemes that provide data integrity [30-32]. The following analyzes 
and compares these security features with related works. 

With centralized schemes such as Castelluccia’s scheme [11], FSP, and D-ASP [10], each 
node protects its sensory data with the secret data shared with the BS. Thus, all the privacy 
data will be disclosed when the BS is compromised. Distributed schemes such as CPDA, 
SMART [4], Conti’s scheme [5], and PAPF [7] protect private data through node collaboration, 
which can also protect private data against outside eavesdroppers, other sensor nodes, and the 
BS.  

With the PAPF scheme, the private data of a random node b are cracked if all its P-class 
members are compromised; therefore, if the cluster size of PAPG is larger than the P-class size, 
the privacy-preserving efficacy of PAPF is more efficient than that of the PAPG scheme. In 
PAPF, the P-class size is recommended as 4 and 5 because the storage overhead of PAPF 
increases quickly with the increase of P-class size. Thus, the PAPG scheme is more efficient in 
privacy protection than PAPF if its cluster size is greater than 5.  

With the CPDA scheme, the private data of a random node b are cracked if all the cluster 
members of the node are compromised. Therefore, if cm m> , then PAPG is more efficient than 
CPDA. In the SMART scheme, a random node b slices its private data into J pieces. Thereafter, 
b keeps one piece to itself and sends (J -1) encrypted pieces to its neighbors. With SMART, on 
average, if the number of compromised nodes is greater than 3( 1) 2J − , then the data privacy 
of node b may be cracked. Therefore, if 3( 1) 2m J> − , then PAPG is more efficient than 
SMART. For CPDA and SMART, a design tradeoff exists between the privacy protection and 
communication efficiency. Thus, cm  and J are recommended by [4] to have a value of 3. 
Therefore, the PAPG scheme is more efficient in protecting privacy than CPDA and SMART 
if m is greater than 3.  
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With Conti’s scheme, in compromising two nodes, the attacker has the opportunity to obtain 
the private data of node b. However, with PAPG, the attacker cannot obtain any private data if 
the compromised nodes are less than (m-1). Moreover, by comparing the analysis and 
simulation results in Conti’s scheme [5], we conclude that under the same condition (i.e., 
cluster size and number of compromised nodes in a cluster), even if the compromised nodes in 
a cluster are greater than (m-1), the probability that the attacker can obtain the private data of b 
in Conti’s scheme is higher than that in PAPG. 

The cluster size of PAPG, which is higher than 5, can be obtained easily. First, as the system 
overhead of PAPG increases gradually with the increase in cluster size (refer to Section 8), the 
increase of the cluster size of PAPG is not constrained by thesystem overheads; this 
characteristic makes PAPG different from the other distributed schemes. Thus, in PAPG, we 
can set the size of the cluster as large as possible. Secondly, although the initial cluster size of 
most clustering algorithms is affected by certain system parameters, the desired cluster size 
(such as larger than 5 or smaller than 10) can be easily obtained through cluster merging or 
division. Therefore, considering that the wireless link of sensor network is vulnerable, we 
recommend the cluster size of PAPG to be larger than 7 in general. In case nodes become 
compromised easily, the cluster size could be set larger. Then, under the recommended cluster 
size, the PAPG scheme is more efficient in privacy protection than PAPF, CPDA, and 
SMART. 

To study the effect of the the probability that one node is compromised on the 
privacy-preservation efficacy of PAPG and to compare the related schemes with PAPG,  
several simulation experiments were conducted, where 1000 sensor nodes were uniformly 
deployed; q, the probability that one node is compromised, changes between 0.05 and 0.3. Fig. 
5 compares the privacy-preservation efficacy against node compromise of PAPG, CPDA, 
SMART, and PAPF, where the average degree of a node is 20, and the slice number in 
SMART is set to 3, which is the recommended parameter value in [4]. According to the 
recommended cluster size, which is 3, the cluster size of CPDA is equal to 3, 4, and 5. Note 
that if the size of all the clusters in CPDA is 3, then the probability that the private data are 
disclosed becomes higher. According to the recommended P-class size, which is 4 or 5, the 
P-class size of PAPF is equal to 4, 5. The cluster size of PAPG is set to 7, which is the 
recommended lowest parameter value. If the cluster size of PAPG is higher than7, then the 
probability that the private data are disclosed becomes lower.  
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Fig. 5. Privacy Comparison under Collusion Attack with recommended parameter values  

(cluster size of CPDA is equal to 3, 4, and 5; the slice number in SMART is 3; the P-class of PAPF is 
equal to 4, 5; the cluster size of PAPG is 7) 
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As shown in Fig. 5, the larger q is, the greater is the percentage that private data are 
disclosed. As the theoretical analysis shows, given q, the percentage of disclosure of private 
data in PAPG is much lower than that of all the other schemes. This means that PAPG 
provides better protection for the private data than the other schemes. The reason is that given 
the q, for a random node b, the more nodes collaborate on private data protection, the lower is 
the probability that all its collaborating members are compromised. Furthermore, according to 
Section 8, the power consumption of PAPG is also efficient than that of the other schemes.  

7. Data Aggregation Accuracy under Data Loss 
When no data is lost, which is the ideal situation, all the data aggregation schemes 

mentioned in this paper can obtain 100% accurate aggregation results. However, these 
schemes react in different ways when messages are lost or delayed. In the PAPG scheme, 
during the intra-cluster communication, the lost messages can be detected by the CH through 
the received messages, so the data sent from the CH to the next hop node are an accurate 
aggregation result. Finally, the BS can obtain the accurate aggregation result of the received 
data, even if message loss occurs during the inter-cluster communication. 

In SMART, FSP, and D-ASP, the aggregation result of the received data cannot be 
recovered when data loss occurs. No source node information is added to any message. 
Therefore, the lost messages cannot be detected by the CH or BS. This problem can be solved 
by adding the source node ID to each message. However, significant extra communication 
overhead is introduced. 

The CPDA, PAPF, and Conti’s scheme can also provide an accurate aggregation result of 
the received data even if message loss occurs. However, given the same message loss rate, 
compared with the CPDA and Conti’s scheme, PAPG can transmit more data during the same 
limited duration because transmitting a message requires time and the number of messages to 
be exchanged in CPDA and Conti’s scheme is several times greater than that of PAPG. In 
addition, cryptograph operation needs a significantly longer time than a simple calculation 
operations; thus, the computation time in PAPF is several times longer than that in PAPG. 
Thus, compared with the existing schemes, PAPG is more suitable for sensor networks with 
variable topology and vulnerable links. 

8 Performance Evaluations 

8.1 Communication Overhead 
8.1.1 Communication Overhead Analysis 

Only intra-cluster communication is analyzed in this study because the inter-cluster 
communication overhead of the PAPG scheme is the same as the one that cannot ensure data 
privacy preservation. The number of all the sensor nodes is denoted as N, and the globe node 
ID length is denoted as glol bits, which is equal to log N    bits. The cluster size is denoted as n, 
and the intra-cluster node ID length is denoted as clul  bits, which is equal to log n   . The length 
of the original sensory data item is denoted as senL  bits, and the length of ulist (containing 
reporting nodes IDs) in DASP scheme is denoted as { }IDL  bits. The following analysis does not 
consider the packet head because we want to compare the expense of these schemes. 

For convenience, similar to [7, 10], we assume that the distance between the heads of two 
neighboring clusters is one hop. If the distance between the heads of two neighboring clusters 



4460         Zeng et al.: PAPG:Private Aggregation Scheme based on Privacy-preserving Gene in Wireless Sensor Networks 

is more than one hop, then a more efficient PAPG can be obtained than the others because as 
analyzed, with PAPG, each node only needs to send a data report, and the packet head of the 
report is shorter than those of the other schemes.  

With PAPG, the message sent from a cluster member b to CH is{ , }bD b . As the length of 
bD is ( )+sen cluL l bits, the length of { , }bD b is ( 2 )sen cluL l+ bits. Based on this finding, the 

communication overhead of b increases with the original data length and the cluster size. In 
addition, as shown in the aforementioned analysis, when n increases, the privacy-preserving 
efficacy of PAPG improves. However, as logclul n=    , the communication overhead of PAPG 
increases slowly with the increase of n, while the privacy-preserving efficacy improves rapidly 
with the increase of n. Thus, the privacy-preserving efficacy of PAPG is not restricted with the 
communication overhead. The communication overhead of PAPF scheme is the same as that 
of PAPG, with no repetition occurring. 

 
Table 5. Intra-cluster Communication Overhead 

(m:  number of reporting cluster members; J:  number of data slices; glol : length of globe ID; clul : length of 
intra-cluster ID; |{M}|: length of message) 
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The communication overheads of all the other schemes are listed in Table 5. The table 

shows that the communication overhead of PAPG is the same as that of the PAPF scheme. In 
addition, as 3≥J , >glo clul l , 3m ≥ , and 2A ≥ , the communication overhead of PAPG is lower 
than those of the other distributed schemes. For FSP to be more efficient than PAPG in 
communication, the inequality 2max{ , ( 1)} (sen glo senL l L+ < 2 )clul+  must be satisfied. This 
inequality is satisfied if and only if 2<sen cluL l . In satisfying 2<sen cluL l , even if 5=clul , maxd < 
1024 or N < 512. Thus, the satisfaction of 2<sen cluL l is limited to the system parameters. In 
other words, the PAPG scheme is also more efficient than the centralized schemes FSP and 
D-ASP in communication in general. 

Numerical Example 3 (communication overhead of each node). Table 6 shows some 
numerical results of the schemes mentioned, with the changing of the parameters senL and n. In 
this case, the length of the intra-cluster ID in PAPG also increases with the increase of n. 
Table 6 shows that as analyzed, the communication overhead of PAPG is light and increases 
gradually with the system parameters because in this case, the communication overhead of 
PAPG only increases with clul and log=   clul n . Notably, when the cluster size is 36, as 
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log36   is equal to log 22   , the communication overhead of node b under this parameter value 
is equal to that of 22. Even when the cluster size increases to 64, node b needs to transmit only 
two extra bits. In addition, given clul , when senL increases, the communication overhead of 
PAPG increases linearly but slower than that of the other privacy-preservation schemes.  

 
Table 6. Numerical results of intra-cluster communication overhead for each node (bits) (given m =3 

and J=3, where m and J are the numbers of the collaboration nodes of CPDA and SMART, respectively) 
Parameter values CPDA SMART FSP Conti’s PAPG/PAPF 

n=8 ( 3=clul ), 11=senL  71 36 22≥  44 17 
n=12 ( 4=clul ), 11=senL  71 37 22≥  44 19 

n=16 ( 4=clul ), 11=senL  71 37 22≥  44 19 
n=20 ( 5=clul ), 11=senL  71 38 22≥  44 21 
n=20 ( 5=clul ), 12=senL  74 41 24≥  48 22 

n=20 ( 5=clul ), 13=senL  77 44 26≥  52 23 

 
 
The given example also shows that although the parameters that affect these 

privacy-preservation schemes are chosen to have the recommended smallest value, the 
communication overhead of PAPG is lower than those of these schemes, and the advantage is 
more significant when compared with the distributed schemes. Parameter m has no effect on 
the communication overhead of PAPG. Even when m increases from the minimum value to n, 
the communication overhead of PAPG remains the same. Meanwhile, the communication 
overheads of other schemes increase quickly if m is equal to n. Thus, compared with these 
distributed schemes, the PAPG is more efficient in preserving privacy and consumes less 
power. 

 
8.1.2 Simulations 
In this subsection, some simulation experiments were conducted to study the effect of the 
percentage of reporting nodes on the communication overheads of the schemes mentioned. 
Similar to [7, 10], this study assumes that all the sensor nodes are to be uniformly deployed in 
a 6×6 square area, which contains 36 cells. The sensor nodes in each cell form a cluster. The 
distance between two cells ranges from 1 ho to 3 hops. The size of the sensory data senL is 16 
bits; the number of sensor nodes in each cell is set to 8; and the size of the node ID is set to 9 
bits. We note that setting the node ID to 9 bits does not limit our scheme because according to 
the preceding analysis, in the PAPG scheme, the communication overhead of a random node b 
is related to senL and n. In addition, the cluster size in CPDA and the slice number in SMART 
are set to 3, which are the recommended parameter values in [4]. According to the analysis in 
Section 6, under these parameter values, the PAPG scheme is more efficient in privacy 
preservation than CPDA and SMART. The communication overheads of the PAPG scheme 
and the PAPF scheme are the same, so they are not compared in this study. 
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Fig. 6. Communications Overhead versus Percentage of Reporting Nodes 

 
Fig. 6 shows the simulation results when the percentage of reporting nodes in each cluster 

changes between 37.5% and 100%. According to Fig. 5, the communication overhead of 
PAPG is higher than that of TAG but lower than that of all the other schemes. The simulation 
results in [4] show that the communication consumption of SMART is close to that of D-ASP 
when 25% of the nodes are reporting. The methods adopted by SMART are used when the 
number of reporting nodes in the cluster is less than m (m=4 in this study). Therefore, our 
simulation result and that in [4] show that the proposed PAPG is more efficient in 
communication than D-ASP. Thus, PAPG is more suitable than the other privacy-preserving 
schemes not only when all the nodes are reporting but also when the number of the reporting 
cluster nodes is changing. 

8.2 Computational Overhead 
In the PAPG scheme, during the data reporting process (performed per session), each node 

must generate its P-Gene by calculating a polynomial function value and modular addition 
operations. In addition, each node must update its Seed Table by calculating 2(n-1) function 
values and modular addition operations. Therefore, the computational overhead of this process 
is 2 ( )O n addition and multiplication operations. To aggregate the data of CH, it must perform 

( )O n addition and multiplication operations. In addition, the computational overhead of the 
initialization process, which is only performed when the network is deployed or when nodes 
are added, is suitable. During this process, each node encrypts each of its generated Seeds and 
decrypts all of the received Seeds. Thus, the computational overhead of this process is 2(n-1) 
encryption/decryption. As shown, the computational overhead of PAPG is suitable. 

In the CPDA scheme, the computational overhead of each cluster member is (2 cn +1) 
encryption/decryption and involves (1)O  addition and multiplication operations. The 
computational overhead of each CH is (1)O  inversion of matrix, 2( 1)cn −  
encryption/decryption, and 2 ( )o J addition and multiplication operations. In the SMART 
scheme, the computational overhead of each node is 2J encryption/decryption and involves 

(1)O addition and subtraction operations. In the FSP and D-ASP schemes, the computational 
overhead of each node is ( )O m  hash operation and involves (1)o modular addition and 
multiplication operations. The computational overhead of Conti’s scheme is 2A hash operation, 
4 encryption/decryption, and ( )O A modular addition and multiplication operations. In addition, 
each CH needs to perform m encryption/decryption and ( )O m addition and multiplication 
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operations. In the PAPF scheme, the communication of each node involves ( )O n addition and 
multiplication operations as well as one encryption.  

According to the preceding analysis, the computation overhead of PAPG is lower than those 
of all other schemes. 

8.3 Storage Overhead 
Nodes in CPDA and SMART do not need to store any information at the expense of additional 
high communication overhead. Two seeds are used in FSP and D-ASP, and the storage 
overhead is 2max( ,  1)+senL l bits. Nodes in Conti’s scheme must store K keys; thus, the storage 
overhead of which is K senL bits. In PAPF, each node b must store the seeds used to generate a 
µ -degree polynomial. Thus, the storage overhead is (2 1)( 1)( )sen clun L lµ− + +  bits. 

In PAPG, each node must store bT . Thus, the storage overhead is 2( 1)( )sen clun L l− +  bits. 
Larger n, senL , and clul   lead to larger storage overhead but also higher privacy-preservation 
efficacy. Thus, a design tradeoff exists between them. The storage overhead of PAPG is higher 
than those of all the other schemes except PAPF. However, the storage overhead of PAPG is 
still light. For example, if n = 20 (the corresponding clul  is 5 bits) and 16=senL  bits (the range 
of the sensory data is between 0 and 16383), then each node only needs to store 100 bytes of 
information. A cluster with a size of 20 is a large cluster. In addition, the range of sensory data 
between 0 and 16383, which contains most of the sensory data ranges, is a wide range, 
although the storage overhead is only 100 bytes. In summary, the storage overhead and 
computation overhead of PAPG are light and suitable for sensor networks. 

8.4 Comparison of Power Consumption 
The overall comparison in terms of system overheads is listed in Table 7.According to this 

table, compared with the distributed PAPF, the PAPG scheme consumes less computation 
overhead but has the same communication overhead. Compared with the distributed CPDA 
and SMART, the PAPG scheme consumes less communication and computation overheads. 
Compared with the centralized FSP and D-ASP, PAPG is more efficient in communication 
while having the same computation overhead. During the data-reporting process, 
energy-consuming operations include communication and calculation. Thus, PAPG is more 
efficient than the other schemes in terms of power consumption. 

Table 7. Comparison between PAPG and other schemes in system overhead per node during 
data-reporting process (Note: clu glol l< , 3m ≥ , 3J ≥ , clu senl L< ) 

Scheme Privacy-preservation 
category 

Communication overhead 
(bits) 

Unencrypted 
scheme 

Storage overhead 
(bits) 

PAPG distributed ( 2 )sen cluL l+  Yes 2( 1)( )sen clun L l− +  

PAPF distributed ( 2 )sen cluL l+  No (2 1)( 1)( )sen clun L lµ− + +  

CPDA distributed [ ( ) ] sen glo clum L l l+ +  No No 

SMART distributed ( )sen cluJL l> +  No No 

FSP centralized 2max{ , 1} sen gloL l +  Yes 2max{ ,  ( 1)}senL l +  

D-ASP centralized 
{ }

(2max{ , 1}
) sen glo

ID

L l
L

+
+  Yes 2max{ ,  ( 1)}senL l +  
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9. Conclusions 
In this study, an erasable data-hiding technique and a collaboration-based 

privacy-preservation scheme PAPG are proposed. Extensive analysis and simulations show 
that, compared with the centralized schemes FSP and D-ASP, PAPG not only avoids the 
single-point problem but also decreases the power consumption and is more resistant to 
vulnerable links. Compared with the distributed CPDA and SMART schemes, the PAPG 
scheme preserves privacy more efficiently while also consuming less power and ensuring 
suitable storage overhead. Compared with the distributed PAPF, the PAPG scheme preserves 
privacy more efficiently while also consuming less power and less storage overhead. 
Consequently, the proposed PAPG is more suitable for use in sensor networks. Our future 
work will involve designing private-preservation data aggregation schemes for general 
aggregation functions and robust private-preservation data aggregation schemes to protect 
against malicious attacks. 

References 
[1] I.F Akyildiz, W Su, Y Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: a survey,” 

Computer Networks, vol. 38, pp.393-422, Mar. 2002. Article (CrossRef Link) 
[2] S Madden, M Franklin, J Hellerstein, and W Hong, “Tag: a tiny aggregation service for ad-hoc 

sensor networks,” SIGOPS Oper. yst.Rev., vol. 36, pp.131-146, 2002. Article (CrossRef Link) 
[3] J Xu, G Yang, Z Chen, Q Wang, “A survey on the privacy-preserving data aggregation in wireless 

sensor networks,” IEEE Journals & Magazines, vol. 12, pp.162-180, May. 2015. 
Article (CrossRef Link) 

[4] W He, X Liu, and H Nguyen, et al., “PDA: Privacy-preserving Data Aggregation in Wireless 
Sensor Networks,” in Proc. of IEEE INFOCOM 2007, pp. 2045-2053, 2007. 
Article (CrossRef Link) 

[5] M Conti, L Zhang, S Roy, et al., “Privacy-preserving robust data aggregation in wireless sensor 
networks,” Security and Communication Networks, vol. 2, n 2, pp. 195-213, March/April 2009. 
Article (CrossRef Link) 

[6] S Huang, S Shieh, J Tygar, “Secure encrypted-data aggregation for wireless sensor networks,” 
Wireless Networks, vol.16, pp. 915-927, Mar. 2010. Article (CrossRef Link) 

[7] W Zeng, Y Lin, J Yu, S He and Lei Wang, “Privacy-preserving Data Aggregation Scheme Based 
on the P-Function Set in Wireless Sensor Networks,” Adhoc & Sensor Wireless Networks, vol. 21, 
pp. 21-58, Jan/Feb. 2014. Article (CrossRef Link) 

[8] T Jung, F Mao, X Li, et al., “Privacy-preserving data aggregation without secure channel: 
multivariate polynomial evaluation,” in Proc. of INFOCOM 2013: 32th IEEE International 
Conference on Computer Communications, pp.2634-2642, 2013. Article (CrossRef Link) 

[9] C Castelluccia, E Mykletun, G Tsudik, “Efficient Aggregation of Encrypted Data in Wireless 
Sensor Networks,” in Proc. of MobiQuitous 2005, pp. 109-117, 2005. Article (CrossRef Link) 

[10] T Feng, C Wang, and W Zhang, et al., “Confidentiality Protection for Distributed Sensor Data 
Aggregation,” in Proc. of IEEE INFOCOM, pp.131-146, 2008. Article (CrossRef Link) 

[11] C Castelluccia, A Chan, E Mykletun, et al., “Efficient and provably secure aggregation of 
encrypted data in wireless sensor networks,” ACM Transactions on Sensor Networks, vol. 5, pp. 
1-36, Mar. 2009. Article (CrossRef Link) 

[12] R Rivest, L Adleman, M Dertouzos, “On data banks and privacy homomorphism. Foundations of 
Secure Computation,” New York: Academic Press, pp.169-179, 1978. Article (CrossRef Link) 

[13] J Girao, D Westhoff, and M. Schneider, “CDA: concealed data aggregation for reverse multicast 
traffic in wireless sensor networks,” in Proc. of 2005 IEEE International Conference on 
Communications, 2005. (ICC 2005), pp.3044-3049, 2005. Article (CrossRef Link) 
 
 

http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1145/1060289.1060303
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jian%20Xu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Geng%20Yang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zhengyu%20Chen.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Qianqian%20Wang.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7112038&queryText=privacy-preserving%20data%20aggregation&sortType=desc_p_Publication_Year
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7112038&queryText=privacy-preserving%20data%20aggregation&sortType=desc_p_Publication_Year
http://dx.doi.org/10.1109/CC.2015.7112038
http://dx.doi.org/10.1109/INFCOM.2007.237
http://dx.doi.org/10.1002/sec.95
http://dx.doi.org/10.1007/s11276-009-0177-y
http://www.oldcitypublishing.com/journals/ahswn-home/ahswn-issue-contents/ahswn-volume-21-number-1-2-2014/ahswn-21-1-2-p-21-58/
http://dx.doi.org/10.1109/INFCOM.2013.6567071
http://dx.doi.org/10.1109/MOBIQUITOUS.2005.25
http://dx.doi.org/10.1109/INFOCOM.2008.20
http://dx.doi.org/10.1109/MOBIQUITOUS.2005.25
https://pdfs.semanticscholar.org/3c87/22737ef9f37b7a1da6ab81b54224a3c64f72.pdf
http://dx.doi.org/10.1109/ICC.2005.1494953


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016                                4465 

[14] Q. Zhou, G. Yang, and L. He, “A Secure-Enhanced Data Aggregation Based on ECC in Wireless 
sensor Networks,” Sensors (Basel, Switzerland), vol.14, pp. 6701-6721, Apr.2014. 
Article (CrossRef Link) 

[15] L Yang, C Ding, and M Wu, “RPIDA: Recoverable Privacy-preserving Integrity-assured Data 
Aggregation Scheme for Wireless Sensor Networks,” KSII Transactions on Internet and 
Information Systems, vol. 9, pp. 5189-5208, Dec. 2015. Article (CrossRef Link) 

[16] W Zhang, C Wang, T Feng, “GP2S: Generic privacy-preservation solutions for approximate 
aggregation of sensor data,” in Proc. of the 6th Annual IEEE International Conference on 
Pervasive Computing and Communications, PerCom 2008, pp.179-184, 2008. 
Article (CrossRef Link) 

[17] M Groat, W He, S Forrest, “KIPDA: k-indistinguishable privacy-preserving data aggregation in 
wireless sensor networks,” in Proc. of INFOCOM 2011: 30th IEEE International Conference on 
Computer Communications, pp. 2024-2032, 2011. Article (CrossRef Link) 

[18] H Zhang, Y Shu, P Cheng, and J Chen, “Privacy and Performance Trade-off in Cyber-Physical 
Systems,” IEEE Network, vol. 30, pp. 62-66, March-April, 2016. Article (CrossRef Link) 

[19] Z Shi, R Sun, R Lu, Le Chen, J Chen, X Shen, “Diverse Grouping-Based Aggregation Protocol 
With Error Detection for Smart Grid Communications,” IEEE Transactions on Smart Grid, vol.6, 
no.6, pp.2856 - 2868, July, 2015. Article (CrossRef Link) 

[20] H Bao and R Lu, “A New Differentially Private Data Aggregation With Fault Tolerance for Smart 
Grid Communications,” IEEE Internet of Things Journal, vol.2, no.3, pp.248 - 258, June 2015. 
Article (CrossRef Link) 

[21] J Won, C Ma, D Yau and N Rao, “Proactive fault-tolerant aggregation protocol for privacy-assured 
smart metering,” in Proc. of IEEE INFOCOM, pp. 2804-2812, 2014. Article (CrossRef Link) 

[22] J Zhao, T Jung, Y Wang and X Li., “Achieving differential privacy of data disclosure in the smart 
grid,” in Proc. of IEEE INFOCOM, pp. 504-512, 2014. Article (CrossRef Link) 

[23] Z Fu, K Ren, J Shu, X Sun, and F Huang, "Enabling Personalized Search over Encrypted 
Outsourced Data with Efficiency Improvement," IEEE Transactions on Parallel and Distributed 
Systems, vol. E98-B, pp.190-200, Jan.2015. Article (CrossRef Link) 

[24] D Djenouri, M Bagaa, “Synchronization Protocols and Implementation Issues in 
Wireless Sensor Networks: A Review,” IEEE Systems Journal, vol.10, No. 2, pp. 617-627, Feb. 
2016. Article (CrossRef Link) 

[25] X Guan, L Guan, X Wang, “A novel energy efficient clustering technique based on virtual hexagon 
for wireless sensor networks,” International Journal of Innovative Computing, Information and 
Control, vol. 7, pp. 1891-1904, Apr. 2011. Article (CrossRef Link) 

[26] W Zhang, M Tran, S Zhu, et al., “A random perturbation-based scheme for pairwise key 
establishment in sensor networks,” in Proc. of MobiHoc'07: Proceedings of the Eighth ACM 
International Symposium on Mobile Ad Hoc Networking and Computing, pp. 90-99, 2007. 
Article (CrossRef Link) 

[27] F Ali, B Mehdi, S Hossein, et al., “A high performance and intrinsically secure key establishment 
protocol for wireless sensor networks,” Computer Networks, vol. 55, pp. 1849-1863, Aug. 2011. 
Article (CrossRef Link) 

[28] P Mukherjee, S Sen, “Comparing reputation schemes for detecting malicious nodes in sensor 
networks[J],” Computer Journal, vol. 54, pp. 482-489, Mar. 2011. Article (CrossRef Link) 

[29] H Zhang, P Cheng, L Shi, and J Chen, “Optimal DoS Attack Scheduling in Wireless Networked 
Control System,” IEEE Transactions on Control System Technology, Vol. 24, pp. 843-852, May 
2016. Article (CrossRef Link) 

[30] M Rezvani, A Ignjatovic, E Bertino, and S Jha, “Secure Data Aggregation Technique for Wireless 
Sensor Networks in the Presence of Collusion Attacks,” IEEE transactions on Dependable and 
Secure Computing, vol. 12, pp.98-110, Jan. 2015. Article (CrossRef Link) 

[31] S Zhu, S Setia, S Jajodia, et al., “An Interleaved Hop-by-Hop Authentication Scheme for Filtering 
False Data in Sensor Networks,” in Proc. of IEEE Symposium on Security and Privacy, pp.259-271, 
2004. Article (CrossRef Link) 

 

http://dx.doi.org/10.3390/s140406701
http://dx.doi.org/10.11999/JEIT150208
http://dx.doi.org/%2010.1109/PERCOM.2008.60
http://dx.doi.org/10.1109/INFCOM.2011.5935010
http://dx.doi.org/10.1109/MNET.2016.7437026
http://dx.doi.org/10.1109/TSG.2015.2443011
http://dx.doi.org/10.1109/JIOT.2015.2412552
http://dx.doi.org/10.1109/INFOCOM.2014.6848230
http://dx.doi.org/10.1109/INFOCOM.2014.6847974
http://dx.doi.org/10.1109/TPDS.2015.2506573
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Djamel%20Djenouri.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Miloud%20Bagaa.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6922482&queryText=time%20synchronization%20for%20sensor%20networks&sortType=desc_p_Publication_Year
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6922482&queryText=time%20synchronization%20for%20sensor%20networks&sortType=desc_p_Publication_Year
http://dx.doi.org/10.1109/JSYST.2014.2360460
http://dx.doi.org/10.1109/NAS.2008.51
http://dx.doi.org/10.1145/1288107.1288120
http://dx.doi.org/10.1016/j.comnet.2011.01.016
http://dx.doi.org/10.1093/comjnl/bxq035
http://dx.doi.org/10.1109/TCST.2015.2462741
http://dx.doi.org/10.1109/TDSC.2014.2316816
http://dx.doi.org/10.1109/SECPRI.2004.1301328


4466         Zeng et al.: PAPG:Private Aggregation Scheme based on Privacy-preserving Gene in Wireless Sensor Networks 

[32] L. Zhu, Z. Yang, M. Li, and D. Liu, "An Efficient Data Aggregation Protocol Concentrated on 
Data Integrity in Wireless Sensor Networks," International Journal of Distributed Sensor 
Networks, vol. 2013, pp. 1-9, Jun. 2013. Article (CrossRef Link) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Weini Zeng is a Senior Engineer in the 716th Institute of China Shipbuilding Industry 
Corporation, China. She received her Ph.D. degree from Hunan University, China, in 
2007 and 2011, respectively. Her current research interests include sensor networks and 
information security 

 
 

Peng Chen is a Senior Engineer in the 716th Institute of China Shipbuilding Industry 
Corporation, China. He received his Ph.D. degree from National Defense Science and 
Technology University, China, in 2007. His current research interests include trust 
computing and information security. 

 
 

Hairong Chen is a Senior Engineer in the 716th Institute of China Shipbuilding 
Industry Corporation, China. His current research interests include trust computing and 
information security. 

 

Shiming He is a lectuer in School of Computer and Communication Engineering, 
Changsha University of Science and Technology, Changsha, China. She received her 
Ph.D. degree in computer application in 2013. Her current research interests include 
privacy preserving, wireless network and moblie computing. 

 

http://dx.doi.org/10.1155/2013/256852

	3. Assumptions and Design Goals
	3.1 System Model
	3.2 Threat Model
	3.3 Security Assumptions
	3.4 Design Goals
	3.5 Basic Idea of Erasable Data hiding Technique

	4. Preliminaries
	5. PAPG
	5.1 Initialization Process for Seed Table Generation and Maintenance
	5.2 Data-reporting Process

	6. Privacy-preservation Efficacy
	6.1 Privacy-preservation Efficacy Evaluation of PAPG
	6.1.1 Analysis of Node Compromise Attack and Node Colluding Attack
	6.1.2 Analysis of Eavesdropping Attack with Node Compromise Attack

	6.2 Privacy-preservation Efficacy Comparison

	7. Data Aggregation Accuracy under Data Loss
	8 Performance Evaluations
	8.1 Communication Overhead
	8.1.1 Communication Overhead Analysis
	8.1.2 Simulations

	8.2 Computational Overhead
	8.3 Storage Overhead
	8.4 Comparison of Power Consumption

	9. Conclusions
	References

