
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, Sep. 2016 4207
Copyright ⓒ2016 KSII

Load Balancing Strategy for P2P VoD
Systems

Guimin Huang1, Chengsen Li1, Pingshan Liu1,2

1Research Center on Data Science and Social Computing, Guilin University of Electronic Technology
Guilin, China

[Email: sen_5201@163.com]
2Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology,

Guilin, China
[Email: 32015581@qq.com]

Received December 10, 2015; revised April 24, 2016; accepted July 1, 2016;

published September 30, 2016

Abstract

In a P2P (Peer-to-Peer) VoD (video-on-Demand) streaming system, the nodes’ load is an
important factor which affects the system performance. In the system, some nodes may
receive too many requests, which leads to overload. On the other hand, some other nodes may
receive too few requests, which leads to low utilization. Therefore, designing a reasonable
load balancing strategy is important. However, existing related studies cannot handle this
problem effectively, because they don’t have an efficient dynamic load information
management mechanism, and they don’t distinguish the difference of requests when transfer
the nodes’ load. In this paper, to manage the dynamic load information efficiently, we design a
load management table for each node. Based on the load information, we propose a load
balancing strategy which uses a request migration algorithm (LBRM). Through simulations,
our scheme can handle the load imbalance problem effectively and improve the users’
playback fluency.

Keywords: load balance, Peer-to-Peer, video-on-demand, request migration, load transfer

A preliminary version of this paper was presented at the International Conference on Computer Science and
Technology (CST2016). This work was supported by the the Foundation of Key Laboratory of Cognitive Radio and
Information Processing, Ministry of Education (GUET, No. CRKL150105), the Science and Technology Research
Program of Guangxi University (No.KY2015ZD047), the Foundation of Key Laboratory of Guangxi Trusted
Software (No. kx201409), the Foundation of Guangxi Experiment Center of Information Science (No. LD13076X),
the Foundation of Guangxi Programs for Science and Technology Development (No. GuiKeGong 1598019-3).

http://dx.doi.org/10.3837/tiis.2016.09.010 ISSN : 1976-7277

mailto:sen_5201@163.com

4208 Huang et al.: Load Balancing Strategy for P2P VoD Systems

1. Introduction

In recent years, the P2P VoD streaming systems have been deployed widely. However, due to
the arbitrariness behavior of nodes, some nodes may receive too many requests. Thus, in the
process of nodes handling these requests, some requests may be delayed or can not handled in
time, while some other nodes may receive too few requests which lead to low utilization. In
this case, the load imbalance problem occurs, which can leads to system performance
degradation and impair the users’ experience. At the same time, due to the nodes in the
network may be heterogeneity, the handling capacity or bandwidth of each node is different,
this leads to the request pressure on each node is not the same, and some nodes may invalid
due to overloading. So how to keep the load balance between nodes in order to avoid that some
nodes become overloading, how to ensure the requests from other nodes to be responded more
stable and faster, these are the problems we need to solve.

The load balancing technology is a good solution to these problems [1]. Nevertheless, as
far as we know, the factors considered in the present study are not comprehensive enough. For
example, most of the research make use of tracker server to manage the node’s load
information, but excessive reliance on server will aggravate the server load and bring about
network congestion. In addition, some studies have not distinguished the difference of the
requests when transferring the node’s requests, i.e., time-bounded and urgency of requests, as
the high degree of emergency request may be transferred mistakenly, which affect the user's
playback quality.

Therefore, we propose a new load balancing scheme which use a request migration
algorithm to balance the load between the nodes. In our scheme, mainly includes the contents
are the following: (1). We constructed a load information management table of nodes, which
can effectively avoid the use of tracker server to manage and propagate node load information.
(2). Analyzing the difference of the received requests. Because of we comprehensive consider
the priority and deadline of the requests, we transfer requests to low utilization nodes
successfully and ensure users’ play fluency at the same time. (3). We construct a node's utility
function to rational select the nodes with high performance and stability as the object of load
transfer, it can help us ensure the reliability of the load transfer.

The paper is organized as follows. In Section 2, we briefly introduce some related work.
In Section 3, we explain our load balancing strategy in detail. In Section 4, we evaluate the
performance of our proposed algorithm. Finally, we conclude this paper in Section 5.

2. Related Work
At present, many scholars have done a lot of efforts to solve the problem of load balancing,
and a number of load balancing strategies have been proposed to improve the performance of
P2P systems. In order to manage node load information in whole network, K. Graffi et al. [2]
proposed to use a specific node which called responsible peer to manage the node information
of a part of nodes, but information exchange with responsible peer frequently might cause the
single-point bottleneck problem. Similarly, literature [3] utilized super nodes to manage node
information which can incur the same problem. In reference [4], the author presented a load
balancing algorithm based on partial network information to improve system load balancing
speed, but this algorithm is based on the assumption that the capacity and ability of each node

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4209

is consistent, which doesn’t conform to the actual situation. Bharambe AR et al. [5] estimated
global load information in the network using random walks, however, in a system containing
N nodes, in order to estimate the load distribution more accurately, the algorithm requires the
use of O (logN) random walks to support the calculation, which would increase the complexity
of the algorithm and the network overhead.

In order to balance the load in the network effectively, a self-adaptive load balancing
algorithm was proposed in [6], in which nodes would create binary tree back-up node tables
for their shared hot files automatically, and transfer extra query request to back-up nodes.
Nevertheless, it does not consider the difference of the requests to be transferred, which may
cause that some requests miss the deadline and do harm to the stability of the system. Yanming
Shen et al. [7] employ SQS policy which chooses the peer with least load to send request so as
to avoid some peers receive too many requests. However, Alix L.H.Chow et al. has already
revealed in their research [8] that this mean is difficult to implement, as it requires exact
knowledge of instantaneous node queue lengths, although periodically updating the node's
request queue size is also not accurate. Literature [9] proposed a multi-attribute range query
approach that also incorporates load balancing, it creates approximate histograms using
random sampling to manage nodes, but introduce a large computational overhead. In the
literature [10], an incentive m echanism based on game theory was proposed to improve the
situation of uneven load among nodes, but the algorithm needs to obtain global network
information in general, it is hard to achieve.

3. LBRM Algorithm
In this section, we first design a load information management table, then we describe the
algorithm we proposed. For a quick reference, we list the main symbols used in the paper in
Table 1.

Table 1. List of symbols used in the paper
Symbol Description

ID
Rj
T
B
N
Uj
tq
tc
Pj
f(t)
F(t)
Si
Pi
Wi

node identifier
the scarcity of the request which required data piece j
a time period that the node record data
the total upload bandwidth of the node
the total neighbor nodes of the required node
the urgency of the request asking for data piece j
the time that corresponding the requested data piece’s playback position
the node's current playback time
the priority of the request asking for data piece j
the online probability starting from the node logging on to moment t
cumulative online probability value
the maximum upload speed of node i
the total amount of upload data pieces of node i
utility value of node i

3.1 Node Information Management
In order to manage and disseminate the load information of each node easily, we construct a

node information management table. This table does not save the load information of all the
nodes in the network, but only save the node and its neighbor nodes’ information. we define

4210 Huang et al.: Load Balancing Strategy for P2P VoD Systems

every twenty nodes within the neighbors as a node cluster, and there are a number of clusters in
the whole network. Then a node information table will be generated based on each node
cluster, it is used as the definition of node load and the basis of load transfer. This table is
divided into two parts: the upper part is mainly used for the judge of load state, the data only
depends on the local information of the node itself. The data with the lower half part need to be
derived from the network and used to record the load information of the neighbor nodes. ID is
a node identifier. Then the parameters of our algorithm mainly come from this table, as show
in Table 2.

Table 2. Load information management table

Peer ID

Type Name Size Number Time
1
2
3
4
5

Data upload
Confirm message
Heartbeat message
Request message
Connect message

32KB
1KB
12B
1KB
1KB

n1
n2
n3
n4
n5

07/29/01:02
07/30/08:32

…
…

07/30/09:21

Backup peer Utility value Load state
ID1
ID2
…

ID20

n1
n2
…
n20

L
N
…
O

3.2 Load Definition
In a P2P VoD system, the key issue to realize the dynamic load balancing of the nodes is

identifying those overload nodes and transferring their load to other low utilization nodes. So,
we must define the load of nodes firstly. Because the bandwidth resource is one of the most
important index in P2P system, it is closely related to nodes’ own bandwidth to upload data or
download video files. In this paper, we use loadDegree to define the load of nodes. The greater
value the loadDegree is, the greater pressure the node bear. It is calculated as follows:

8

t T t T

t t
us ms

loadDegree
B T

+ + + × 
 =

×

∑ ∑
 (1)

Among them, us is the total amount of video data uploaded by the node, which belongs to

the type 1 in Table 2. ms is the size of all kinds of message packets sent by the node, which is
in response to the type 2 to 5 in Table 2. T is a period of time and B is the total upload
bandwidth of the node. Thus, the calculation of the node load only depends on the local
information and needn’t to get other information from the network so as to calculate more
conveniently and save the cost.

3.3 Load Decision
Obviously, how to determine whether the node is overloaded and how the load information

is transmitted in the network when nodes are aware of their own load by local information is
the key problems of this stage. We solve it by the following two sections:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4211

3.3.1 load state classify
To design a dynamically changing node load information table is a big challenge because

that the load of a node is a time varying value. We divides the load into three grades as shown
in Table 2. It is denoted as state O when loadDegree is greater than 85%. Similarly, it is
denoted as state L when loadDegree is less than 30%, the rest is denoted as state N. It is
unnecessary to update the load change in real-time after dividing the node state. We just need
to pay attention to the state switch of the node(for example: from N to O), and the load
information is updated once there is a state switch. Generally, in the steady state of P2P
network, 66% nodes have no contribution to the whole system and 20% nodes provide 98%
sharing files [11], this means that only a small number of nodes switch their state in a time unit,
we don't need to update too much information, so we can greatly reduce network overhead in
this way.

3.3.2 load information spread
In P2P VoD system, we call those nodes which have the same resource as neighbors, they

exchange BM(buffer map) with each other periodically. When a data request was sent to a
node in a node cluster, the requested resource is also contained in other nodes in this cluster, so
we only transfer the load of the nodes that within the node clusters. That is to say, we need only
spread the load information between the nodes in the cluster. We use biased gossip protocol to
form a network view based on these node clusters, and the message is disseminated and
updated only in corresponding nodes cluster when a node’s load state changes.

By this means, the resource node which need to transfer the load is aware of the load
information of the neighbor nodes. we can manage the node's load information without using
the tracker server or a specific management node, and it can effectively reduces the overhead
of load information disseminate in the network by classifying the load information.

3.4 load Transfer
The intended purpose of this section is to transfer the load to the low utilization nodes

without affecting the user's playback fluency as much as possible. In order to reduce node load,
we transfer a certain amount of queuing requests to those low utilization nodes in time, this can
not only effectively alleviate the burden of the current node, but also guarantee the data
requests to get a more quick response. However, if the overload node transfers those requests
without screening, although it can decrease the load of this node, but some urgent requests
may be transferred by mistake so that the request can not be timely responded. Therefore, we
should consider not only the load of the node but also the priority of the transfer request in the
process of transferring load so as to ensure that the emergency request isn’t lost. Our algorithm
is to measure the priority of the request by using the scarcity and urgency of the data piece.
Firstly transferring these high priority requests that the node can not handle in time, then
gradually transfer the low priority request.

First, we analyze the definition of the request’s scarcity, as shown in formula (2):

 1
[][]

1

N

k
j

BM k j
R

N
== −
∑

 (2)

4212 Huang et al.: Load Balancing Strategy for P2P VoD Systems

Here, scarcity refers to the proportion of the number of nodes caching a piece of data, which
accounts for the proportion of the total number of the neighbor nodes. Rj indicates the scarcity
of the required data piece j, N represents the total neighbor nodes of the required node.
BM[k][j] indicates whether the neighbor node k missed data piece j or not, if k lost data piece j
when it was caching the video resource which contained j, then we denote BM[k][j]=0, or
BM[k][j]=1. Thus, the more nodes that lost this data piece in the network, the sooner we
should handle it, so as to reduce the rarity of the data and improve the efficiency of resource
sharing.

Then we deduce the following formula in respect of the urgency of the request:

 1 q c
j

t t
U

T
−

= − (3)

Here, Uj indicates the urgency of the request asking for data piece j , tq represents the
time that corresponding the requested data piece’s playback position, tc represents the node's
current playback time, T represents the total duration of the video. We can know from formula
(3) that the more tq close to tc, which means that the more urgent the data request is. According
to formula (2) and formula (3), we can get the request priority as shown in formula(4):

 1
[][]

* 1 * 1

N

q ck
j j j

BM k j t t
P U R

N T
=

 
  − 
 = = − − 
   
  

∑
 (4)

Pj indicates the priority of the request asking for data piece j .After get the priority, we
can gradually transfer the requests with low priority out contrasting to the value of Pj until the
node are not overloaded. But in the P2P VoD system, not all the high priority requests can be
successfully processed. So we combine the request deadline to screen out some urgent
requests which cannot handle in time. Here, we introduce an example as follows:

Fig. 1. Initial ordering of requests

Fig. 2. Ordering after processing

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4213

We assume that the time for each request handled by the node is one time unit, and
normalized the deadline of each request. We ordering the requests within five time units by the
deadline (as shown in Fig. 1). For example, the time required for the successful handling of the
request A is one time unit, due to the deadline of A is 1.2 unit, which is more than one unit, so
request A can be successfully processed by the node. Likewise, request B can be successfully
processed, too. We need two time units to deal with A and B. That is to say, when we finished
processing A, B and C we need 3 units time. However, because of the deadline of C is 2.8 unit,
which is less than 3, it means that the node can’t handle C in time, similarly, D can’t be treated
in time due to the lack of time after handling C. So we have to make a prejudgment before a
period of time, to remove C from the request queue and transfer it to other low utilization
nodes. So we can do it like this:

Step 1. Ordering the queuing requests within 5 time units by the deadline.
Step 2. Determine if there is more than one request in a time unit, if not, turn to step 4.
Step 3. Determine whether the time required for the successful handling of the request is

small than the deadline of the request, if the answer is yes, then we judge the next request, or
we need to transfer the request.

Step 4. Continuing to filter the next time unit, if this five time unit are already screened, then
continue to the next round of the iteration, turn to step 1.

We can see from Fig. 2 that D becomes a request that can be processed successfully after
eliminating request C which can not be handled. By this means, firstly we transfer those high
priority requests which can’t handle in time, then we gradually transfer the requests with low
priority out until the node are not overloaded. That is to say, we use the way which combines
the priority with deadline to carry out the process of the request transfer.

3.5 Node Selection
Here, we discuss how to select the appropriate low utilization node as the loads’ receiver.

The focus is that we should to choose those nodes which have sufficient and stable bandwidth
as the receiver of the load as much as possible. We use the utility function of the nodes as the
basis for the selection here. However, Literature [12] pointed out that a peer does not
automatically know its own available uplink bandwidth. In other words, If we still need to
measurement the available bandwidth of the other nodes when we transfer the load, this is
bound to affect the timeliness of information, lead to inaccurate measurement results, and
introduce additional information overhead. In order not to have additional information
exchange, we predict the node's ability to provide bandwidth by recording the historical
maximum upload speed of nodes. Besides, regarding the stability of the node, we use the
online time of nodes to herald it. Literature [14] found that in a P2P VOD system, the
probability density distribution function of the online time of nodes obeys lognormal
distribution. According to mathematical derivation, we can get:

()

2

ln1() exp , 0
22
t

f t t
t

µ
σπσ
− 

= − > 
 

 (5)

Here, f(t) represents the online probability starting from the node logging on to moment t, μ

represents the average value of the logarithm of the node's online time t, σ represents the
standard deviation of the logarithm of the node's online time t. In order to illustrate the stability

4214 Huang et al.: Load Balancing Strategy for P2P VoD Systems

of the nodes more clearly, we can calculate the cumulative online probability values of the
node starting from it logging on the network to moment t by using the formula (5), namely:

0

() ()
t

F t f t dt
+

= ∫ (6)

For node i, we also consider other factors, here we use Si to represent the node’s maximum

upload speed. Pi represents the total amount of the node’s upload data pieces. Then, the node's
utility functions are as follows:

 ()*()i i iW F t S Pα β= + (7)

The bigger the value of F(t), the longer the node's online time in the future. α and β is the
weighting factor. F(t) and Pi indicate the stability of the nodes, when the node is in a low
utilization state. The greater the value of Wi, the more the service ability it can provide.

3.6 LBRM Algorithm
In this section, we briefly summarize our algorithm. The basic idea of this selection

algorithm is that: according to the state switching rule described above, the node updates the
load information within a node cluster when the node has just become an overloaded node.
Beginning, the overload node give priority to select the nodes which with the state L as the
transfer object. Among those nodes, the overload node will select a node with high utility
value to transfer load. When the state of the chosen node shifted from L to N due to receiving
load continually, we initiate a new round of state updating. The node updates the load
information and the utility value of its neighbors, and we can select a new low utilization node
to continue the process of load transfer. If there is no low utilization node in the neighbors,
then we select the node in N state for transmission. When we initiate another round of state
updating after the state is transferred from N to O, we should abandon this node and select
another node which not overload for load transfer.

Algorithm 1 LBRM algorithm

1: collect the information of nodes
2: calculate the loadDegree
3: while loadDegree >85% do
4: calculate Pj
5: judge whether each request can handle in time
6: if not then
7: regard these requests which cannot handle as

 the object of earliest transfer
8: else
9: choose the requests with low priority as the object of transfer
10: end if
11: for each backup node do
12: if the node’s state is L then
13: priority to choose this node as the load receiver
14: end if

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4215

15: if the backup node with state L isn’t exist then
16: choose the nodes with state N as receivers
17: if the backup node with state N isn’t exist then
18: send a reject message to the requestor and

 let it choose a new resource node
19: end if
20: end if
21: end for
22: for each object of transfer do
23: use utility function to select the appropriate
 receiver as a transfer target
24: start to transfer the load
25: end for
26: end while

4. Performance Evaluation
In order to evaluate the performance of our algorithm LBRM, we do extensive simulations

and make comparisons with two other schemes: SQS [7] and a self-adaptive load balancing
algorithm(SALB) [6]. As everyone knows, playback fluency, average uplink bandwidth
utilization, node load distribution and overload number proportion are a few more important
performance indicators in load balancing. So in this paper, we mainly compare and analyze the
performance of those four indicators.

4.1 Simulation Settings
In order to evaluate the performance of LBRM algorithm, we do a simulation experiments.

The final experimental result is an average value of data which is obtained from running the
simulation program five times with the same parameters. The simulation model we
constructed containing a tracker server, a streaming server and many peers. The tracker server
have saved the information of all nodes and other servers, meanwhile it is also responsible for
returning the original list of the resource nodes, and the streaming server have cached all the
video resources in the network, the request node will ask the streaming server for resources
when other nodes in the network don’t contain.

Our simulation parameters are set as follows. (1) The initial node number is 100 and the
joining of nodes obeys the linear distribution, this way is similar to the rule of node joining in
the literature [15]. In each period the number of the nodes is increased by 30 and the
maximum size is 3000 peers. There are 500 shared videos in the network, the node's upload
bandwidth is randomly set at a range of 70~200Kbps. (2) The upload bandwidth of the tracker
server is set to 20Mbps, and the delay is 10ms. The upload bandwidth of the streaming server
is set to 50Mbps. (3) The size of the node cluster is initialized as 20, and the node exchanges its
BM(buffer map) messages with its neighbors in every 5s. (4) A previous study [16] has
described that a peer needs to download some consecutive video data before it can start to play
back. In order to pre-fetch data, we have to divide the video file. All videos are divided into
blocks with the same size 2MB and the last block may be less than or equal to 2MB, then each
block is divided into 64 pieces, and the size of each piece is 32K.

4216 Huang et al.: Load Balancing Strategy for P2P VoD Systems

4.2 Simulation Results
In the P2P system, the nodes should contribute their own upload bandwidth resources. Since

we transfer the load of the overloaded node to the idle low utilization node, so the bandwidth
utilization of nodes in the network is relatively improved. We plot the CDF of the upload
bandwidth utilization ratio in Fig. 3 under three different schemes.

Fig. 3. the CDF of the upload bandwidth utilization ratio

From Fig. 3 we can see, in the system using LBRM algorithm, only about 30% of the node's

upload bandwidth utilization is less than 0.5, but the proportion has reached 95% and 63%
when using SQS and SALB algorithm. The reason can be explained as that SQS algorithm
send requests to the low load node preferentially, so most of the nodes’ load in the network is
in a relatively low level. Nevertheless, the optional objects for receiving loads are relatively
less in SALB algorithm, so the number of nodes with low bandwidth utilization is more than
that of our algorithm. Moreover, the total number of nodes using LBRM algorithm in the range
of 0.6 to 0.8 of the bandwidth utilization is more than other two algorithms. From the graph,
we can see that our algorithm is obviously superior to SQS and SALB.

 Fig. 4. the load distribution of the nodes

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4217

In order to better illustrate the load balance in the network, we list all the load distribution of
the nodes. From Fig. 4 we can see that the number of overloaded nodes in the P2P network
using the SQS strategy is higher than the other two algorithms. The reason is that it doesn’t set
the threshold of node overload, and no further processing measures for overload nodes, which
results in the generation of more overloaded nodes. And in the P2P network using the SALB
policy, because of the overload threshold it set is the average value of the neighbor nodes, so
the number of nodes in the low load area is larger, but the available bandwidth of those nodes
with a strong ability is to be wasted in this way. In summary, the other two algorithms have
poor performance in load balancing. But in the P2P network using the LBRM policy, thanks to
our division of node states, most of the nodes’ load is concentrated between 30% and 85%,
which indicates that the load on each node is roughly balanced.

The playback continuity index(CI) under three different schemes is compared in Fig. 5.
Playback continuity index is the ratio of the data actual obtained by the node to the data should
be obtained in each time interval after the node begins to playback the video [13]. It reflects the
fluency user playing video. The higher the value is, the more fluent the video playback. In the
traditional P2P network, the overloaded node is unable to serve others in time, which results in
that some request nodes can’t obtain the data piece within a specified time, which greatly
affects the quality of service(Qos). Therefore, a good load balancing strategy should be able to
improve the user's playback fluency.

 Fig. 5. the playback continuity index

From Fig. 5 we can know, the three algorithms’ quality of playback has improved with the

increase of the number of the nodes which can also increase the number of the low utilization
nodes, and it makes the transfer of load more convenient. When the number of nodes exceeds
1500, LBRM and SALB are basically reached a stable state, but the quality of SQS hasn’t been
improved too much yet, because it doesn’t consider the emergency of the request and the
receiver's bandwidth. Which makes the probability that the request can get a timely response
isn’t too high. Thus, we can get a higher degree of playback fluency when using LBRM.

Then we compared the performance of three algorithms on load balance degree. We
measure it by the number of overloaded nodes here. The more the number of which
algorithm’s overloaded nodes in the network is reduced within a time unit, the more effective
this load balancing algorithm is.

4218 Huang et al.: Load Balancing Strategy for P2P VoD Systems

 Fig. 6. overload number proportion

In Fig. 6, we start to record the data of the three algorithms when the number of overloaded

nodes accounts for 10% of the total number of nodes in the network, within 0 to 200 seconds,
the number of overloaded nodes was significantly declined in the network using LBRM and
SQS, and the speed the number of overloaded nodes declining of SALB is slower than the first
two algorithms. This is because LBRM is transferring requests directly, and SQS is sending a
request to the low utilization node in a way of changing the request directly, so their
improvement rate is larger. However, the SALB algorithm firstly needs to build a backup node
of the popular shared files according to the request should be transferred, then the process of
load transfer started, of course it has a poor efficiency. Within 300th to 500th seconds, due to
SQS not considering the receiver's bandwidth and its’ bearing ability, so the number of
overloaded nodes is still more than our algorithm’s, it is clearly that our algorithm is better
than the other two algorithms in speed and efficiency in the aspect of reducing the overloaded
nodes.

In order to test the performance of LBRM algorithm with different experimental parameters,
we have adjusted the parameters of the experiment. Based on the original experimental
parameters, we change the bandwidth distribution of nodes, and make the chum of system
considered. The simulator determines each sender’s uploading bandwidth following the
distribution given in Table 3. This upload bandwidth distribution is proposed in a recent paper
[17] according to various measurement studies on both corporate and residential users.
Because the peers may use other Internet applications such as Web browser and e-mail when
using the P2P streaming, the peers would not contribute all their upload bandwidth to the P2P
streaming. The peers’ lifetime follows an exponential distribution with a mean of θ s [18]. The
value θ denotes the peer churn rate. The smaller the mean value θ, the higher the peer churn
rate. In this experiment, we set the value θ to be 400s.

Table 3. Peer upload bandwidth distribution
Distribution(%) 10.0 14.3 8.6 12.5 2.2 1.4 6.6 28.1 16.3
Total upload bandwidth(Kbps) 256 320 384 448 512 640 768 1024 >1500
Contributed upload bandwidth 150 250 300 350 400 500 600 800 1000

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4219

Fig. 7. the playback continuity index under different parameters

In Fig. 7, we compare the performance of the three algorithms in the playback continuity

index once again. From Fig. 7 we can see that the experimental results of these three
algorithms have corresponding changes when the experimental parameters are changed.
Because the churn is added in the system, the playback continuity index of the node is reduced,
and the initial value is reduced to 0.87. In addition, the curve in the graph reflects the
fluctuation of the network churn, which makes the playback quality of the nodes vary in a
great range of fluctuations. In the initial stage, the growth rate of CI value of LBRM and SALB
is higher than that of the SQS algorithm, the main reason is that the upload bandwidth of the
node increases, which makes the number of nodes required for load transfer decrease.
Therefore, the number of peers affected by the overload nodes reduces in system. However,
SQS focuses on the number of nodes that receive the minimum number of requests, the effect
of changing the nodes’ bandwidth on the algorithm is very small. From the curve of each
algorithm we can see, the LBRM algorithm has a better performance than the other two
algorithms after changing the experimental parameters.

Fig. 8. overload number proportion under different parameters

4220 Huang et al.: Load Balancing Strategy for P2P VoD Systems

In order to further observe the changes of the overload nodes in the network, we continue to
record the ratio of the overloaded nodes. As shown in Fig. 8, From the beginning that we
record the data, the suppression efficiency of the overloaded nodes with each algorithm is
relatively high. However, after 200 seconds in the experiment, LBRM algorithm constantly
requests redirection, which makes the ratio of the overloaded nodes almost become 0%. It can
be seen that in the case of larger bandwidth resources, the operation effect of each load
balancing strategy is more obvious.

5. Conclusion
In this paper, we have proposed a new load balancing scheme which uses request migration

algorithm. This scheme mainly use in the P2P VoD system. First, we constructed a load
information management table of the nodes. Through the information in the load information
management table, we can manage the node’s load effectively, which does not rely on the
tracker server. Second, we proposed a new algorithm to reasonably transfer the requests from
overload nodes to low utilization nodes. In our algorithm, we considered the emergency and
the timeliness of requests during load transferring so that we can avoid the loss of data caused
by the transfer of load in the traditional load balancing strategy. Third, we constructed a node's
utility function and then selected the right node as the recipient of the request according to the
utility value of the node. Through these measures, we have effectively solved the problem of
uneven load in the network. Finally, we demonstrated the performance of this scheme through
simulations. The simulation results showed that our scheme can effectively balance the load of
nodes in the network.

References
[1] Qiao Y, Bochmann G, “Load balancing in peer-to-peer systems using a diffusive approach,”

Computing, 94(8-10): 649-678, 2012. Article (CrossRef Link).
[2] Graffi K, Kaune S, Pussep K, et al. “Load balancing for multimedia streaming in heterogeneous

peer-to-peer systems,” in Proc. of the 18th International Workshop on Network and Operating
Systems Support for Digital Audio and Video, ACM, 99-104, 2008. Article (CrossRef Link).

[3] Zhong L, Xu C. “DLCA: Distributed load balancing and VCR-aware two-tier P2P VoD system,”
in Proc. of Consumer Communications and Networking Conference, 199-204, 2014.
Article (CrossRef Link).

[4] Yao L, Dai G Z, Zhang H X, et al., “Load balancing algorithm for P2P systems based on partial
network information,” Journal of Computer Applications, 27(5): 1080-1082, 2007.
Article (CrossRef Link).

[5] Bharambe A R, Agrawal M, Seshan S. “Mercury: supporting scalable multi-attribute range
queries,” ACM SIGCOMM computer communication review, 34(4): 353-366, 2004.
Article (CrossRef Link).

[6] Xiong N, Xu K, Chen L, et al., “An Effective Self-adaptive Load Balancing Algorithm for
Peer-to-Peer Networks,” Parallel and Distributed Processing Symposium Workshops & PhD
Forum, 1425-1432, 2012. Article (CrossRef Link).

[7] Yang S, Shen Y, Qu W, et al., “A Novel On-Demand Streaming Service Based on Improved
BitTorrent,” Frontier of Computer Science and Technology, Fifth International Conference on.
IEEE, 46-50, 2010. Article (CrossRef Link).

[8] Yang Y, Chow A L H, Golubchik L, et al. “Improving QoS in bittorrent-like VoD systems,” in
Proc. of INFOCOM, 2010 Proceedings IEEE, 1-9, 2010. Article (CrossRef Link).

http://dx.doi.org/10.1007/s00607-012-0196-x
http://dx.doi.org/10.1109/DS-RT.2006.15
http://dx.doi.org/10.1109/CCNC.2014.6866571
http://dx.doi.org/10.1109/ICCIMA.2007.282
http://dx.doi.org/10.1145/1015467.1015507
http://dx.doi.org/10.1109/IPDPSW.2012.179
http://dx.doi.org/10.1109/FCST.2010.111
http://dx.doi.org/10.1109/INFCOM.2010.5462029

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4221

[9] Vu Q H, Ooi B C, Rinard M, et al., “Histogram-Based Global Load Balancing in Structured
Peer-to-Peer Systems,” IEEE Transactions on Knowledge & Data Engineering, 21(4):595-608,
2009. Article (CrossRef Link).

[10] Gupta R, Somani A K., “Game theory as a tool to strategize as well as predict nodes' behavior in
peer-to-peer networks,” in Proc. of Parallel and Distributed Systems, 11th International
Conference on. IEEE, 1: 244-249, 2005. Article (CrossRef Link).

[11] Ying H, Zhigang C., “USMI: An Ultra-node Selection Mechanism with Incentive in P2P Network,”
Multimedia Information Networking and Security, 131-135, 2010. Article (CrossRef Link).

[12] Wang Y, Fu T Z J, Chiu D M. “Design and evaluation of load balancing algorithms in P2P
streaming protocols,” Computer Networks, 55(18): 4043-4054, 2011. Article (CrossRef Link).

[13] Vlavianos A, Iliofotou M, Faloutsos M., “BiToS: Enhancing BitTorrent for supporting streaming
applications,” in Proc. of 25th IEEE International Conference on Computer Communications.
Proceedings. IEEE, 1-6, 2006. Article (CrossRef Link).

[14] Veloso E, Almeida V, Meira W, et al., “A hierarchical characterization of a live streaming media
workload,” in Proc. of the 2nd ACM SIGCOMM Workshop on Internet measurement, 117-130,
2002. Article (CrossRef Link).

[15] Shen Y, Hsu C H, Hefeeda M., “Efficient Algorithms for Multi-Sender Data Transmission in
Swarm-Based Peer-to-Peer Streaming Systems,” Multimedia IEEE Transactions on,
13(4):762-775, 2011. Article (CrossRef Link).

[16] Liu P, Huang G, Feng S, et al., “Event-Driven High-Priority First Data Scheduling Scheme for P2P
VoD Streaming,” Computer Journal, 56(2):239-257, 2013. Article (CrossRef Link).

[17] Liu Z, Shen Y, Ross K W, et al., “Substream trading: towards an open P2P live streaming system,”
Network Protocols, 94-103, 2008. Article (CrossRef Link).

[18] Hei X, Liang C, Liang J, et al., “A Measurement Study of a Large-Scale P2P IPTV System,”
Multimedia IEEE Transactions on, 9(8):1672-1687, 2007. Article (CrossRef Link).

http://dx.doi.org/10.1109/TKDE.2008.182
http://dx.doi.org/10.1109/ICPADS.2005.157
http://dx.doi.org/10.1109/MINES.2010.36
http://dx.doi.org/10.1016/j.comnet.2011.07.021
http://dx.doi.org/10.1109/INFOCOM.2006.43
http://dx.doi.org/10.1109/TNET.2005.863709
http://dx.doi.org/10.1109/TMM.2011.2108644
http://dx.doi.org/10.1093/comjnl/bxs127
http://dx.doi.org/10.1109/ICNP.2008.4697028
http://dx.doi.org/10.1109/TMM.2007.907451

4222 Huang et al.: Load Balancing Strategy for P2P VoD Systems

Guimin Huang is a full professor at Guilin University of Electronic Technology in
China. He worked as an assistant professor at the Curtin University in Australia.
Recently, he has published more than eighty academic papers on international journal and
international conference, published one book of Peer-to-Peer network, awarded a patent
of invention as well as five Software Copyright Registration Certificates. His research
interests include distributed networks and text mining.

Chengsen Li is a postgraduate at Guilin University of Electronic Technology. He
focuses on the P2P networks and its quality of service.

Pingshan Liu is currently an Associate Professor at Guilin University of Electronic
Technology in China. His research interests include content distribution on streaming
media, cloud computing and data mining.

	Guimin Huang1, Chengsen Li1, Pingshan Liu1,2
	Guilin, China
	[Email: 32015581@qq.com]
	Abstract
	3.1 Node Information Management
	Table 2. Load information management table
	3.3 Load Decision
	3.3.1 load state classify
	3.3.2 load information spread
	3.4 load Transfer
	Fig. 1. Initial ordering of requests
	Fig. 2. Ordering after processing
	3.5 Node Selection
	3.6 LBRM Algorithm
	4.1 Simulation Settings
	4.2 Simulation Results
	Fig. 3. the CDF of the upload bandwidth utilization ratio
	Fig. 4. the load distribution of the nodes
	Fig. 5. the playback continuity index
	Fig. 6. overload number proportion
	References

