DOI QR코드

DOI QR Code

Density functional theory study of CH4 and CO2 adsorption by fluorinated graphene

  • Hwang, Doh Gyu (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Jeong, Euigyung (Department of Textile System Engineering, Kyungpook National University) ;
  • Lee, Seung Geol (Department of Organic Material Science and Engineering, Pusan National University)
  • 투고 : 2016.08.13
  • 심사 : 2016.08.30
  • 발행 : 2016.10.31

초록

키워드

참고문헌

  1. Herzog H, Eliasson B, Kaarstad O. Capturing greenhouse gases. Sci Am, 282, 72 (2000). http://dx.doi.org/10.1038/scientificamerican0200-72.
  2. Lashof DA, Ahuja DR. Relative contributions of greenhouse gas emissions to global warming. Nature, 344, 529 (1990). http://dx.doi.org/10.1038/344529a0.
  3. Liu Y, Wilcox J. CO2 adsorption on carbon models of organic constituents of gas shale and coal. Environ Sci Technol, 45, 809 (2011). http://dx.doi.org/10.1021/es102700c.
  4. Saha D, Bao Z, Jia F, Deng S. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A. Environ Sci Technol, 44, 1820 (2010). http://dx.doi.org/10.1021/es9032309.
  5. Han S, Kim S, Lim H, Choi W, Park H, Yoon J, Hyeon T. New nanoporous carbon materials with high adsorption capacity and rapid adsorption kinetics for removing humic acids. Microporous Mesoporous Mater, 58, 131 (2003). http://dx.doi.org/10.1016/S1387-1811(02)00611-X.
  6. Wahby A, Ramos-Fernández JM, Martínez-Escandell M, Sepúlveda-Escribano A, Silvestre-Albero J, Rodríguez-Reinoso F. Highsurface-area carbon molecular sieves for selective CO2 adsorption. Chemsuschem, 3, 974 (2010). http://dx.doi.org/10.1002/cssc.201000083.
  7. Yoon HJ, Jun DH, Yang JH, Zhou Z, Yang SS, Cheng MMC. Carbon dioxide gas sensor using a graphene sheet. Sens Actuators B Chem, 157, 310 (2011). http://dx.doi.org/10.1016/j.snb.2011.03.035.
  8. Schrier J. Fluorinated and nanoporous graphene materials as sorbents for gas separations. ACS Appl Mater Interfaces, 3, 4451 (2011). http://dx.doi.org/10.1021/am2011349.
  9. Yu HR, Cho S, Bai BC, Yi KB, Lee YS. Effects of fluorination on carbon molecular sieves for CH4/CO2 gas separation behavior. Int J Greenhouse Gas Control, 10, 278 (2012). http://dx.doi.org/10.1016/j.ijggc.2012.06.013.
  10. Im JS, Kang SC, Bai BC, Bae TS, In SJ, Jeong E, Lee SH, Lee YS. Thermal fluorination effects on carbon nanotubes for preparation of a high-performance gas sensor. Carbon, 49, 2235 (2011). http://dx.doi.org/10.1016/j.carbon.2011.01.054.
  11. Dassault Systemes, Biovia Corp. Materials Studio 8.0 Software, Biovia, San Diego (2015).
  12. Moon HS, Lee JH, Kwon S, Kim IT, Lee SG. Mechanisms of Na adsorption on graphene and graphene oxide: density functional theory approach. Carbon Lett, 16, 116 (2015). http://dx.doi.org/10.5714/CL.2015.16.2.116.
  13. Moon HS, Yun JM, Kim KH, Jang SS, Lee SG. Investigations of the band structures of edge-defect zigzag graphene nanoribbons using density functional theory. RSC Adv, 6, 39587 (2016). http://dx.doi.org/10.1039/C6RA03458F.
  14. Koh W, Choi JI, Jeong E, Lee SG, Jang SS. Li adsorption on a fullerene–single wall carbon nanotube hybrid system: density functional theory approach. Curr Appl Phys, 14, 1748 (2014). http://dx.doi.org/10.1016/j.cap.2014.09.031.
  15. Koh W, Lee JH, Lee SG, Choi JI, Jang SS. Li adsorption on a graphene–fullerene nanobud system: density functional theory approach. RSC Adv, 5, 32819 (2015). http://dx.doi.org/10.1039/C4RA15619F.
  16. Koh W, Moon HS, Lee SG, Choi JI, Jang SS. A first-principles study of lithium adsorption on a graphene–fullerene nanohybrid system. Chemphyschem, 16, 789 (2015). http://dx.doi.org/10.1002/cphc.201402675.
  17. Lee JH, Kang SG, Kim IT, Kwon S, Lee I, Lee SG. Adsorption mechanisms of lithium oxides (LixO2) on N-doped graphene: a density functional theory study with implications for lithium–air batteries. Theor Chem Acc, 135, 50 (2016). http://dx.doi.org/10.1007/s00214-016-1805-0.
  18. Lee JH, Kang SG, Moon HS, Park H, Kim IT, Lee SG. Adsorption mechanisms of lithium oxides (LixO2) on a graphene-based electrode: a density functional theory approach. Appl Surf Sci, 351, 193 (2015). http://dx.doi.org/10.1016/j.apsusc.2015.05.119.
  19. Kwon S, Choi JI, Lee SG, Jang SS. A density functional theory (DFT) study of CO2 adsorption on Mg-rich minerals by enhanced charge distribution. Comput Mater Sci, 95, 181 (2014). http://dx.doi.org/10.1016/j.commatsci.2014.07.042.
  20. Kwon S, Ham DJ, Lee SG. Enhanced H2 dissociative phenomena of Pt–Ir electrocatalysts for PEMFCs: an integrated experimental and theoretical study. RSC Adv, 5, 54941 (2015). http://dx.doi.org/10.1039/C5RA07228J.
  21. Kwon S, Lee SG. Influence of defective sites in Pt/C catalysts on the anode of direct methanol fuel cell and their role in CO poisoning: a first-principles study. Carbon Lett, 16, 198 (2015). http://dx.doi.org/10.5714/CL.2015.16.3.198.
  22. Lee JH, Kang SG, Choe Y, Lee SG. Mechanism of adhesion of the diglycidyl ether of bisphenol A (DGEBA) to the Fe(100) surface. Compos Sci Technol, 126, 9 (2016). http://dx.doi.org/10.1016/j.compscitech.2016.02.002.
  23. Brunello GF, Lee JH, Lee SG, Choi JI, Harvey D, Jang SS. Interactions of Pt nanoparticles with molecular components in polymer electrolyte membrane fuel cells: multi-scale modeling approach. RSC Adv, 6, 69670 (2016). http://dx.doi.org/10.1039/C6RA09274H.
  24. Monkhorst HJ, Pack JD. Special points for brillouin-zone integrations. Phys Rev B, 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188.
  25. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys, 132, 154104 (2010). http://dx.doi.org/10.1063/1.3382344.
  26. Graham C, Pierrus J, Raab RE. Measurement of the electric quadrupole moments of CO2, Co and N2. Mol Phys, 67, 939 (1989). http://dx.doi.org/10.1080/00268978900101551.
  27. Wood BC, Bhide SY, Dutta D, Kandagal VS, Pathak AD, Punnathanam SN, Ayappa KG, Narasimhan S. Methane and carbon dioxide adsorption on edge-functionalized graphene: a comparative DFT study. J Chem Phys, 137, 054702 (2012). http://dx.doi.org/10.1063/1.4736568.
  28. Jeong E, Jung MJ, Lee SG, Kim HG, Lee YS. Role of surface fluorine in improving the electrochemical properties of Fe/MWCNT electrodes. J Ind Eng Chem, 43, 78 (2016). http://dx.doi.org/10.1016/j.jiec.2016.07.050.

피인용 문헌

  1. adsorption on graphene: A thermodynamical study vol.97, pp.15, 2018, https://doi.org/10.1103/PhysRevB.97.155428
  2. Tunable Electronic Properties of Nitrogen and Sulfur Doped Graphene: Density Functional Theory Approach vol.9, pp.2, 2019, https://doi.org/10.3390/nano9020268