참고문헌
-
Haach VG, Juliani LM, Roz MRD. Ultrasonic evaluation of mechanical properties of concretes produced with high early strength cement. Constr Build Mater, 96 , 1 (2015). http://dx.doi.org/10.1016/j.conbuildmat.2015.07.139. -
Chang C, Ho M, Song G, Mo YL, Li H. A feasibility study of selfheating concrete utilizing carbon nanofiber heating elements. Smart Mater Struct,
18 , 127001 (2009). http://dx.doi.org/10.1088/0964-1726/18/12/127001. -
Xu Y, Chung DDL. Effect of sand addition on the specific heat and thermal conductivity of cement. Cem Concr Res,
30 , 59 (2000). http://dx.doi.org/10.1016/S0008-8846(99)00206-9. -
Corinaldesi V, Mazzoli A, Moriconi G. Mechanical behaviour and thermal conductivity of mortars containing waste rubber particles. Mater Des,
32 , 1646 (2011). http://dx.doi.org/10.1016/j.matdes.2010.10.013. -
Ahn KL, Jang SJ, Jang SH, Yun HD. Effects of aggregate size and steel fiber volume fraction on compressive behaviors of highstrength concrete. J Korea Concr Inst,
27 , 229 (2015). http://dx.doi.org/10.4334/JKCI.2015.27.3.229. -
Liu J, Li Y, Li Y, Sang S, Li S. Effects of pore structure on thermal conductivity and strength of alumina porous ceramics using carbon black as pore-forming agent. Ceram Int,
42 , 8221 (2016). http://dx.doi.org/10.1016/j.ceramint.2016.02.032. -
Kim KH, Jeon SE, Kim JK, Yang S. An experimental study on thermal conductivity of concrete. Cem Concr Res,
33 , 363 (2003). http://dx.doi.org/10.1016/S0008-8846(02)00965-1. -
Yuan G, Li X, Dong Z, Xiong X, Rand B, Cui Z, Cong Y, Zhang J, Li Y, Zhang Z, Wang J. Pitch-based ribbon-shaped carbon-fiberreinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity. Carbon,
68 , 413 (2014). http://dx.doi.org/10.1016/j.carbon.2013.11.018. -
Xu R, Chen M, Zhang F, Huang X, Luo X, Lei C, Lu S, Zhang X. High thermal conductivity and low electrical conductivity tailored in carbon nanotube (carbon black)/polypropylene (alumina) composites. Compos Sci Technol,
133 , 111 (2016). http://dx.doi.org/10.1016/j.compscitech.2016.07.031. -
Han S, Lin JT, Yamada Y, Chung DDL. Enhancing the thermal conductivity and compressive modulus of carbon fiber polymer–matrix composites in the through-thickness direction by nanostructuring the interlaminar interface with carbon black. Carbon,
46 , 1060 (2008). http://dx.doi.org/10.1016/j.carbon.2008.03.023. -
Han B, Zhang L, Zhang C, Wang Y, Yu X, Ou J. Reinforcement effect and mechanism of carbon fibers to mechanical and electrically conductive properties of cement-based materials. Constr Build Mater,
125 , 479 (2016). http://dx.doi.org/10.1016/j.conbuildmat.2016.08.063. -
Hambach M, Möller H, Neumann T, Volkmer D. Portland cement paste with aligned carbon fibers exhibiting exceptionally high flexural strength (> 100 MPa). Cem Concr Res,
89 , 80 (2016). http://dx.doi.org/10.1016/j.cemconres.2016.08.011. -
Fu X, Lu W, Chung DDL. Ozone treatment of carbon fiber for reinforcing cement. Carbon,
36 , 1337 (1998). http://dx.doi.org/10.1016/S0008-6223(98)00115-8. -
Chen PW, Chung DDL. Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection. Smart Mater Struct,
2 , 22 (1993). http://dx.doi.org/10.1088/0964-1726/2/1/004. -
Babkina LA, Prokopenko MI, Soloshenko LN, Zinchenk VL, Stepanyuk NA, Gerashchuk YA, Il'chenko NV. Development of compositions of highly refractory mortars. Refract Ind Ceram,
41 , 137 (2000). http://dx.doi.org/10.1007/BF02693772. -
Lu Y, Li N, Li S, Liang H. Behavior of steel fiber reinforced concrete-filled steel tube columns under axial compression. Constr Build Mater,
95 , 74 (2015). http://dx.doi.org/10.1016/j.conbuildmat.2015.07.114. -
Dai Y, Sun M, Liu C, Li Z. Electromagnetic wave absorbing characteristics of carbon black cement-based composites. Cem Concr Compos,
32 , 508 (2010). http://dx.doi.org/10.1016/j.cemconcomp.2010.03.009. -
Simon KM, Kishen JMC. Influence of aggregate bridging on the fatigue behavior of concrete. Int J Fatigue,
90 , 200 (2016). http://dx.doi.org/10.1016/j.ijfatigue.2016.05.009.