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Abstract 

 
Use-After-Free (UAF) is a common lethal form of software vulnerability. By using tools 
such as Web Browser Fuzzing, a large amount of samples containing UAF vulnerabilities 
can be generated. To evaluate the threat level of vulnerability or to patch the vulnerabilities, 
automatic deduplication and exploitability determination should be carried out for these 
samples. There are some problems existing in current methods, including inadequate 
pertinence, lack of depth and precision of analysis, high time cost, and low accuracy. In this 
paper, in terms of key dangling pointer and crash context, we analyze four properties of 
similar samples of UAF vulnerability, explore the method of extracting and calculate 
clustering eigenvalues from these samples, perform clustering by fast search and find of 
density peaks on a large number of vulnerability samples. Samples were divided into 
different UAF vulnerability categories according to the clustering results, and the 
exploitability of these UAF vulnerabilities was determined by observing the shape of class 
cluster. Experimental results showed that the approach was applicable to the deduplication 
and exploitability determination of a large amount of UAF vulnerability samples, with high 
accuracy and low performance cost. 
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1. Introduction 

Vulnerability has been a serious threat to the commercial softwares, Web Services[1], 

Internet of Things[2], and even home automation systems[3]. Use-After-Free (UAF) 
vulnerability [4] is one type of vulnerabilities that can be commonly found in web browser 
software, e.g., Internet Explorer, Chrome, and Firefox. The fast and automatic discovery of 
vulnerabilities can be conducted on the web browser software via fuzzing test tools [5]. 
Internet Explorer 8, for instance, uses “nduja,” a vulnerability discovery tool for web 
browser software, for its security testing, and about 100 UAF vulnerability samples can be 
generated within 24 hours. If a multi-machines parallel test is adopted, the number of 
vulnerability samples will increase proportionally with the number of testing machines. Due 
to the characteristics of fuzzing test, most samples are real and repeatable, leading to crashes 
of the software under test. It is necessary to analyze the causes of theses vulnerability 
samples, in order to evaluate the threat level of the software vulnerability or to patch these 
vulnerabilities. 

Before analysis, since a variety of samples may be derived from the same vulnerability 
(we call these samples are in the same vulnerability category), they should be classified and 
deduplicated. Moreover, the exploitable and unexploitable vulnerabilities respectively 
represent different threat level, they should be determined through analysis of vulnerability 
samples. As it is very difficult to manually classify the duplicated samples and to determine 
the exploitability of a vulnerability among a large number of samples, an automatic approach 
must be used, in an attempt to achieve the following goals. 

Goal 1  To automatically classify the UAF samples, in order to merge the duplicated 
samples. 

A vulnerability is unique means that the root cause of it is different from the other ones. 
For example, CVE-2014-1776 vulnerability is caused by mistakenly releasing the “CMarkup” 
object [6], while CVE-2013-3893 vulnerability is caused by mistakenly releasing the 
“CTreeNode” object [7]. It is impossible to classify samples according to the sample 
contents, because there may be great differences between the contents of UAF samples 
although they are in the same category. For example, to trigger a web browser software 
vulnerability, a large number of javascript codes will be generated and the key one is 
submerged in a lot of redundant ones. Unfortunately, the vast majority of them are not 
associated. In this paper, according to the root cause of the samples, we propose a novel 
approach to fast screening of duplicated samples by clustering. 

Goal 2  To automatically determine the exploitability of UAF vulnerability.  
Being exploitable means that one vulnerability can not only destroy but also tamper the 

execution flow of the program, enabling execution of arbitrary instructions. In this paper, we 
propose an idea to automatically determine the exploitability of UAF vulnerability based on 
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the characteristics of exploiting UAF vulnerability. 
The remaining of the paper is organized as follows: In Section 2, the classification 

principles and exploitability determination principles, as well as the difficulties in the 
implementation process, of UAF vulnerability were discussed and defined. In Section 3, four 
properties of UAF vulnerability were investigated, the clustering approach was selected to 
achieve the goals, and a detailed description of the implementation process was provide. In 
Section 4, the feasibility of the approach was demonstrated by experimental data, with low 
calculation cost and extremely high accuracy. 

2. Problem Overview 
2.1 Related Definition 

UAF vulnerability refers to the condition where an object is created and then released in later 
runtime, but the pointer that points to this object still remains in the memory. In the 
subsequent process of the program, the program will crash if this pointer was used to access 
the memory area of this released object. UAF vulnerability is common in web browser 
software. Taking CVE-2012-4782 vulnerability [8] as an example, the critical javascript 
codes of the vulnerability sample is shown in Fig. 1A. 

 
A
L1      e0 = document.getElementById("a");
L2      e1 = document.getElementById("b");
L3      e2 = document.createElement("c");
L4      e1.applyElement(e2);
L5      e1.appendChild(document.createElement('button'));
L6      e1.applyElement(e0);
L7      e2.outerText = "";
L8      e2.appendChild(document.createElement('body'));

7305cc36  mov     eax,dword ptr [edi]  ds:002b:0b36efa8=????????
……

7305cc4b  call    dword ptr [eax+0DCh]

Button Object In Memory
(Released)

Button Object Pointer
(Dangling Pointer) 

C

B

 
 

Fig. 1. CVE-2012-4782 sample. (A) The critical javascript code. 
 (B) The x86 instructions causing crash. (C) The schematic diagram of dangling pointer. 
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Three objects of element, i.e., e0, e1, and e2, were created in line L1-L3, respectively. 
Their corresponding parent-child relationship was created in L4-L6 in the sequence of 
e2->e0->e1->“button,” All child elements of e2 were eliminated in L7, including the newly 
created “button” object, then the reuse of “button” object was caused in L8. But at this time, 
since the memory occupied by “button” object had been released, Use-After-Free 
vulnerability was triggered. 

The x86 instructions causing crash is shown in Fig. 1B, where 0x0b36efa8, the value of 
edi register, was the pointer of “button” object, pointing to a memory area which had been 
released. As a result, access violation exception occurs in the program. In this case, the 
pointer of “button” object was a dangling pointer [9], as shown in Fig. 1C.  

 
The dangling pointer was defined as follows. 
Definition 1  The pointer variable p is a dangling pointer, if and only if  

( ) [ ]( ) ( )32: ( ) | 0 2 1 , 1 ( )x allocate size x p x x size release x= ≤ ≤ − ∧ ∈ + − ∧  

denoted dangling pointer as 
DPp . It was based on the assumption that the program 

was running on the x86 instruction system.  
In summary, UAF vulnerability is defined as follows. 
Definition 2  A program crash is UAF vulnerability, if and only if the dangling pointer 

is generated and reused during the execution process of the program. The formalization is 
defined as follows:  

{ } ( )( ( ))UAF DPCrash Vul Crash Access p∈ ⇔ ←  

It should be noted that not all the dangling pointers generated by program will cause 
crash, only the key dangling pointer (noted KDP) which cause crash is concerned. The 
KDP should be taken as the basis to determine whether the multiple UAF samples belong to 
the same vulnerability category. For instance, in Fig. 1A, the KDP is “button,” which is the 
basis for determining the CVE-2012-4782 vulnerability category. The principle for 
classifying the vulnerability categories is defined as follows. 

Definition 3  Several UAF samples belong to the same category of vulnerability, if 
and only if the KDP in them is generated from the same piece of program codes which 
creating (i.e., allocating) and releasing it. 

Similarly, in terms of patching vulnerabilities, if the program codes generating the KDP 
can be located and fixed, then all the samples in this vulnerability category will be invalid 
and this vulnerability thus will be fundamentally patched. 

These are the conditions that generate and trigger the UAF vulnerabilities, as well as the 
principle for classifying their categories. To exploit UAF vulnerability, “memory occupying” 
should be carried out, that is, before the dangling pointer is reused, the pointed memory area 
is first filled as the controllable data. Still, taking CVE-2012-4782 as example, the “memory 
occupying” codes are shown in Fig. 2. 
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L1       for(var i = 0; i<0x150; i++) {
L2      occur_arr[i] = document.createElement("div");
L3       occur_arr[i].title = junk.substring(0,(0x58-6)/2);
L4       }  

Fig. 2. The “memory occupying” codes for CVE-2012-4782 
 

A total of 0x150 “div” objects were created in this piece of codes, and the size of each 
object was carefully calculated to be exactly 0x58 bytes, the size of “button” object, and then 
the memory of “button” object which had been just released was refilled. When the 
vulnerability was triggered, edi register in Fig. 1B would point to the content of “div” object. 
Since the data in this memory was controllable, eax register was controlled, and then the 
execution flow was tampered by the subsequent instruction call[eax+0xdc]. Arbitrary code 
can be executed by combining the HeapSpray technique [10].  

Definition 4  A UAF vulnerability is exploitable, if and only if pointed memory area 
can be occupied by controllable data, before the KDP is reused. The formalization is defined 
as follows. 

{ } { }
[ ]( ) ( )( )

21
1 2[ ] | 0, ( ) ( ) |

UAF exploitable

DP controlled DP DP tt

Crash Vul Vul

p l data l sizeof p Access p t t

∈ ∩ ⇔

+ ← ∈ ∧ <
 

where t1 and t2 respectively represent the time where events occur.  
There may be a case where the memory area cannot be occupied, and the C codes in Fig. 3 
illustrates this case. 
 

L1       char *p = (char*)malloc(100);
L2       free(p);
L3       *p = ‘a’;  

Fig. 3. The unexploitable UAF vulnerability 
 

Obviously, crash would be caused by L3. But this vulnerability is unexploitable, as 
between L2 and L3, there is no opportunities to occupy the memory area pointed by pointer 
p by using the controllable data. 

 

2.2 Difficulty Analysis 

To achieve Goal 1 and Goal 2, there are two main difficulties as follows. 
Difficulty 1  To achieve Goal 1, we first need to analyze why the KDP was generated 

in samples, then classify some samples as the same vulnerability category if they are caused 
by the same KDP. It should be noted that there is diversity in the way the same UAF 
vulnerability generated crash, which was depending on when and where the KDP was reused. 
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For instance, due to the blindness of Fuzzing test, the memory pointed by the KDP in the 
vulnerability sample might be occupied by various objects, such as “div” or “image,” before 
being reused. This would cause the program crash in different time and instructions, e.g., 
when invoking property or method of “div” or “image,” Therefore, the difficulty in 
classifying the UAF vulnerability samples is about how to identify their most fundamental 
causes from a variety of program crash scenes, i.e., find and compare the KDP of them. 
Based on the method of dynamic taint analysis [11], Undangle [12] tracks the allocations and 
releases of all pointers in the program, and is effective in finding and eliminating the 
dangling pointers. However, this tool must run on TEMU simulator [13]. Limited to its 
running speed, Undangle will take up to 1982 seconds to analyze a complex vulnerability 
sample. For this reason, this method is not suitable for analyzing a large number of 
vulnerability samples. 

Difficulty 2  To achieve Goal 2, we need to determine whether there is an opportunity 
to occupy the memory pointed by the KDP with controllable data before the KDP was reused. 
An analysis of the internal processes of the program would be necessary, and the situation 
could be very complex. For web browser software, “having the opportunity to occupy” 
means that, after a HTML or javascript object is released, and before it is reused, there is 
opportunity to execute javascript codes to occupy the memory, which often occurs between 
two statements of javascript; for network communication software, “having the opportunity 
to occupy” means that before the KDP is reused, the program can reads network data and 
allocate memory for these data. So far, there has been no automatic method of determining 
exploitability in UAF vulnerability, while the determination method by manually analyzing 
the program process is not only time consuming but also inaccurate. 

3. Method and Implement 
By debugging and observing a large number of UAF samples, we found that similar samples 
showed measurable patterns and similarities in two dimensions--the creation and release of 
the KDP, and the context where crash occur. Moreover, there was significant difference 
between the exploitable and unexploitable vulnerability categories. Therefore, in this paper, 
on the basis of the fast clustering algorithm proposed by Alex Rodriguez et al. [14], an 
approach was put forward to fast and accurately classify different UAF samples and to 
determine the exploitability of UAF vulnerability, thereby achieving Goals 1 and 2. 
 

3.1 Observation of Samples 

We can’t determine vulnerability category according to the content of samples, however, the 
samples those in the same vulnerability category share similarities on the running track in the 
program. According to observation on a lot of samples, UAF vulnerabilities have the 
following four properties. 
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Property 1  The information of the same KDP are restored in the crash context of the 
samples in the same vulnerability category. 

When the program crash are caused by the KDP, the context where crash occur will 
surely restore some information of this pointer, for instance, a register may be pointing to 
this KDP, such as edi register shown in Fig. 1B. Otherwise, a register may be in the range of 
this pointer, or else, a dword value in the current stack is associated with it. This property can 
be used to quickly determine the range of the KDP among various pointers. 

Property 2  The running tracks of the samples in the same vulnerability category 
contain the same creation and release codes of the KDP. 
 

Sample1

Access

Crash

Alloc

p2

Release

Alloc

p1

Access

…

Alloc

pn

Release

Access

Sample2

Occupy

Access

Alloc

p'1

Release

…

Alloc

p'm

Access

Alloc Allocating memory Release Release memoryAccess Accessing memory

Crash Program crash 

Sample3

Access

Crash

Alloc

p''k

Release

…

Alloc

p''1

Access

Release

Crash

Occupy Occupying memory  
 

Fig. 4. The use of pointers in separately samples 
 

 
Fig. 4 illustrates this property, here p represents the memory pointers in the program. If 

both sample1 and sample2 belong to the same vulnerability category, then
2p and '

1p will have 

the similar Alloc and Release blocks. If sample2 and sample3 do not belong to the same 

vulnerability category, then '

1p and ''

kp will show significant difference in their Alloc and 

Release blocks. Hence this property can be used as one of the bases for measuring clustering 
similarities.  

It should be noted that due to the diversity of the samples, Access block and Occupy 
block may show great differences in samples even if they belong to the same category, so we 
don’t take Access block and Occupy block as measurement basis of clustering. 

Property 3  There are similarities in the crash context of the samples in the same 
vulnerability category.  

Deriving from the same vulnerability, the similar samples show identical or similar 
context when causing crash in program. In Fig. 4, if sample1 and sample3 belong to the 
same vulnerability category, it indicates that they are both triggered by the same KDP(

2p and
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''

kp ). Since the memory is not occupied by other objects (i.e., there is no Occupy block for 

2p and ''

kp ), the location of crash instructions is exactly the same, and their Crash blocks are 

also exactly the same. On the contrary, if they do not belong to the same vulnerabilities 
category, their Crash blocks are completely different.  

Furthermore, we assume that sample1 and sample2 belong to the same vulnerability 

category, they are both triggered by the same KDP(
2p and '

1p ). Since there is one more 

Occupy block in the KDP( '

1p ) of sample2, leading to their completely different but 

associated Crash blocks. We can illustrates it in Fig. 1B. If there is no Occupy block, and the 
memory pointed by edi register has been released and thus cannot be accessed, then mov 
instruction will be crash. Otherwise if there is Occupy block, and the memory pointed by edi 
has been occupied by other objects, then mov instruction is normal, but the subsequent call 
instruction may be crash, because the memory pointed by eax register may be not accessible. 
It should be noted that the locations of mov and call instructions are close to each other. 
Therefore, this property can also be used as one of the bases for measuring clustering 
similarities. 

Property 4 The exploitable and unexploitable UAF vulnerabilities are significantly 
different in the composition of categories. 

If the exploitable UAF vulnerabilities have been tested for long enough, among the 
obtained abundant sample sets, there are inevitably some samples that can occupy the 
memory pointed by the KDP, and some samples that cannot. Therefore the exploitable UAF 
vulnerabilities simultaneously have two subcategories of samples, which are relevant but 
significant different. The relevance between them apparently originates from properties 1 
and 3, while the significant difference refers to their crash context—the samples that can 
occupy the memory will crash in diverse locations, while others generally crash in the same 
location. We have explained this situation in the example in Property 3. We also can deduce 
that the unexploitable UAF vulnerabilities only have one subcategory of samples, those do 
not have opportunities to occupy the memory and always crash in the same location. 
Therefore, the exploitable and unexploitable UAF vulnerabilities are significantly different 
in the composition of categories, and this property can be used to determine the exploitability 
of a vulnerability. 

 

3.2 Determination of Methods and Algorithms 

Based on the above analysis, it can be found that the similar samples are similar in two 
dimensions: 1) The creation and release codes of the KDP, and 2) the crash context. In this 
regard, the eigenvalues of a lot of UAF samples were extracted and calculated, mapped as 
points in a two-dimensional diagram. Then the clustering algorithm was adopted to complete 
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the sample clustering to obtain the classification graph, in which the samples in the same 
class cluster were regarded as the same vulnerability category, thereby achieving the 
deduplication of the samples. Moreover, the exploitability of one vulnerability was 
determined according to Property 4. 

The clustering algorithm adopted in this paper was proposed by Alex Rodriguez et al. in 
2014 [14]. This algorithm is short and efficient, assuming that the center of class cluster is 
surrounded by neighbor points with low local density and is relatively far from any points 
with higher density. For each data point i, two values should be calculated: its local density, 

iρ , and its distance iδ  from points of higher density, both of which depend on the distance 

ijd  between data points. 

The local density iρ of data point i is defined as ( )i ij c
j

d dρ χ= −∑ , where ( )xχ

function is defined as ( )
1, 0
0, 0

x
x
x

χ


= 


<
≥

, and cd  represents a cutoff distance. In fact, iρ  

is equal to the number of the points with a distance less than cd  to point i. iδ  of data 

point i is the minimum distance from point i to any point with higher density, defined as 

( ):min
j ii j ijdρ ρδ
>

= . For the point with the maximum density, ( )maxi j ijdδ =  is set. The 

points with a great iρ  and a great iδ  are considered to be the center of the class cluster, 

after that all the other points belong to the clusters represented by the nearest cluster centers. 
This algorithm can identify the class clusters with various shapes, and the clustering is 

achieved without iteration. It has been proven to have lower calculation cost, faster speed, 
and better clustering than the conventional clustering algorithm, such as K-means [15]. 

 
3.3 Record of Pointers Information 

By debugging each UAF sample, the breakpoints were set in the API function of allocating 
memory and releasing memory. For example, rtlAllocateHeap and rtlFreeHeap functions in 
ntdll.dll in the Windows platform. When the above functions were invoked, the related 
information of the pointers were automatically recorded, including: 
1) The call stack when the allocating API was invoked, denoted as set 
{ _ | [0, ]}i allocalloc stack i n∈ . 

2) The pointer value returned after invoking an allocating API, denoted as set 
{ }_ | [0, ]i allocalloc ptr i n∈ . 

3) The size of the allocated memory in bytes, denoted as set { }_ | [0, ]i allocalloc size i n∈ . 
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4) The call stack when the releasing API was invoked, denoted as set 
{ _ | [0, ]}i releaserelease stack i n∈ . 

5) The pointer value when memory release, denoted as set { }_ | [0, ]i releaserelease ptr i n∈ . 

 

3.4 Selection of Candidate Sets of the KDP 

When program crash, the crash instructions were analyzed, and the current call stack was 
denoted as crash_stack, before the following operations: 
1) To calculate crash_addr, which is the memory address causes “Access Violation,” if 

( )
( )

_ [ _ , _ _ 1] | [0, ]

[0, ], _ _

∧∈ + − ∈

∃ ∈ =

i i i

j i

alloc

release

crash addr alloc ptr alloc ptr alloc size i n

j n release ptr alloc ptr
 

suggesting that _ ialloc ptr  is directly related to the KDP, and thus should be given a high 

weighted value. All points i meeting the requirement are denoted as candidate set highweightI . 

2) To scan 8 values of general registers, denoted as { }_ | [1,8]kreg addr k ∈ , if 

( )
( )

_ [ _ , _ _ 1] | [1,8], [0, ]

[0, ], _ _
i i i

j i

k alloc

release

reg addr alloc ptr alloc ptr alloc size k i n

j n release ptr alloc ptr∧

∈ + − ∈ ∈

∃ ∈ =
 

suggesting that _ ialloc ptr  is not directly related to the KDP, and thus should be given a 

medium weighted value. All points i meeting the requirement are denoted as candidate set 

midweightI . 

3) To scan all values of dword in the current stack, denoted as 
{ }_ | [0, ]k instackinstack addr k n∈ , if 

( )
( )

_ [ _ , _ _ 1] | [0, ], [0, ]

[0, ], _ _
i i i

j i

k instack alloc

release

instack addr alloc ptr alloc ptr alloc size k n i n

j n release ptr alloc ptr∧

∈ + − ∈ ∈

∃ ∈ =
 

suggesting that is indirectly related to the KDP, and thus should be given a low weighted 

value. All points i meeting the requirement are denoted as candidate set lowweightI . 

The purpose of this step is as follows: The information of thousands to hundreds of 
thousands of points will be recorded by step 3.3, where only one or several pointers are 
related to the KDP. According to Definition 1, the dangling pointer must be a released one, 
and according to Property 1, the crash context will restore the information of the KDP. Three 
candidate sets of KDP with different weighted values can be selected from a lot of pointers 

by the above 3 requirements, highweightI , midweightI  and lowweightI , in order to facilitate the 

next extraction and calculation of the eigenvalues. 
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3.5 Quantification of Call Stack Eigenvalue 
The call stack information includes the instruction address, function name, function 
parameters, etc., and is not suitable for calculating the eigenvalue. It should be quantified. 
The principle of quantification is to extract and normalize the most representative address in 
the call stack. The calculation method is to take each line of instruction address in the call 
stack into the form of (DLL name + address offset value). The ASCII code values of the DLL 
names are added, while the hexadecimal value of the address offset value are added every 8 
bits, then the weighted sum of the two are calculated. The formula is as follows. 

( LLname )

1

( _ _ [ ]) 0x100 +(address_offset & 0xff)+((address_offset>>8) & 0xff)

+((address_offset>>16) & 0xff)+((address_offset>>24) & 0xff)

lengh D

i

byte in DLLname i
=

×∑

  
The final result is a 32-bit value similar to the CRC checksum. For example, if the call 

stack is: 
ntdll+0x00064142 
ntdll+0x00007760 
kernel32+0x00152340 
Then the calculated result is: 

(0x6E+0x74+0x64+0x6C+0x6C)*0x100+（0x00+0x06+0x41+0x42） 

+（0x6E+0x74+0x64+0x6c+0x6c）*0x100+（0x00+0x00+0x77+0x60） 

+（0x6B+0x65+0x72+0x6E+0x65+0x6C+0x33+0x32）*0x100+（0x00+0x15+0x23+0x40) = 0x723D8 
Instead of directly calculating the instruction address, the form of (DLL name + address 

offset value) is adopted to avoid being affected by ASLR technique [16] in operating system. 
Moreover, instead of Hash algorithm, a weighted sum is adopted to ensure that a similar 
calculated result can be obtained from the similar instruction address, to facilitate the 
calculation of similarity. 

 

3.6 Extraction and Calculation of Clustering Eigenvalue 
Two clustering eigenvalues of each sample were extracted and calculated, respectively: 
1) The eigenvalues of the KDP. The call stack in the 3 candidate sets of the KDP was 
quantified to obtain the eigenvalue by using the method in Section 3.5, and the 

corresponding eigenvalue sets were respectively denoted as _ |i highweightalloc value i I∈ , 

_ |i midweightalloc value i I∈  and _ |i lowweightalloc value i I∈ , which were then added by the following 

formula: 
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0.5 0.3
( _ ) ( _ )

|

0.2
( _ )

|

| | |

|

∈ ∈

∈

× + × +

×

∑ ∑

∑

i j
i I j I

k
k I

highweight midweight

lowweight

highweight midweight

lowweight

alloc value alloc value
I

alloc value
I

I
 

With the weighted proportion of 0.5, 0.3, and 0.2, this formula normalized the 
eigenvalue of 3 candidate sets to the range of 32 bits. 
2) The crash context eigenvalue. The call stack of crash instruction, crash_stack, was 
quantified to obtain eigenvalue crash_value, by using the method in Section 3.5, and the 
eigenvalue was also normalized to the range of 32 bits. 
 

3.7 Clustering 

The crash context eigenvalues were mapped to the two-dimensional x-axis, the eigenvalues 
of the KDP were mapped to the y-axis. The clustering algorithm introduced Section 3.2 was 
used to perform clustering analysis of these data points, to obtain the decision graph. The 
samples corresponding to the data points belonging to the same category of cluster were 
classified as the same vulnerability category. This clustering algorithm requires to manually 
designate a cutoff distance parameter dc. In addition, to automatically select the center point 

of class cluster, the points with iδ  and iρ  within the appropriate range should be selected. 

The known classified data were used for training to ultimately obtain the appropriate range 

of iδ  and iρ . The clustering process is detailed in the experimental analysis in Section 4. 

 

3.8 Determination of Exploitability 

We According to Property 4, the exploitable and unexploitable vulnerabilities are 
significantly different in the clustering results. The latter only include the sample clusters do 
not perform Occupy, so there is no significant difference in x values between the data points. 
However, the former include both the sample clusters perform and do not perform Occupy, 
and there is no significant difference in y-axis between the data points of these two class 
clusters, but there is significant difference in x-axis (but it is not significant enough to affect 
the clustering results). Hence, by observing the shape of the class cluster, the exploitability of 
the vulnerabilities can be determined. See Section 4.5 for details. 
 

3.9 System Design 
Based on the methods and analysis above, we implemented the ADEDU(Automatic 
Deduplication and Exploitability Determination of UAF) system. Fig. 5 illustrates the 
overview of this system. 
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Fig. 5. Overview of ADEDU’s design. 

 
Firstly, UAF vulnerability sample is delivered to the windbg debugger tool in order to 

debug it’s process, then we can obtain the x and y axis data which are necessary for 
clustering. We programed a C plugin for windbg to provide the functionalities descripted in 
Section 3.3, 3.4, 3.5 and 3.6. The x-axis data are obtained from follow way: 1) Recording 
pointers information and exception information. 2) Selecting candidate sets of the KDP by 
the method descripted in Section 3.4. 3) Quantifying call stack represented by candidate sets. 
4) Normalizing the eigenvalue of call stack. Similarly, the y-axis data are obtained from call 
stack too. However, it is not represented by candidate sets, but by exception context when 
program crash. 

Secondly, we use these data for clustering, which is descripted in Section 3.7, although 
the process of tuning parameters is detailed in Section 4. 

4. Experimental Studies 

In this study, the hardware platform was the Intel i7 4GHz processor and 16GB memory. The 
software platform was the 64-bit version of Windows 7 SP1 operating system. To obtain a lot 
of UAF vulnerability samples, we improved “nduja” tool by adding the new test objects, 
attributes and methods, and used this tool simultaneously on 10 computers to test the 32-bit 
version of Internet Explorer(version 8.0.7600.16385) for 3 consecutive days, thus obtaining 
1,236 vulnerability samples. Meanwhile, 6 samples of known exploitable vulnerabilities in 
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Internet Explorer were collected to verify the correctness and effectiveness of the proposed 
approach, so there are 1,242 samples in total. 

We divided 1,242 samples into 2 sets randomly--1,041 samples(including 6 samples of 
known exploitable vulnerabilities) and 201 samples. It took a total of 12,692 seconds by 
using ADEDU to extract and calculate the clustering eigenvalues of the 1,041 samples, with 
an average of 12.2 seconds for each sample. Fig. 6A shows the distribution of these samples 
after their eigenvalue were calculated, with x-axis representing the crash context eigenvalues, 
and y-axis representing the KDP eigenvalues. ①~⑥ in the figure represent the class 
clusters where the samples of 6 known vulnerabilities existed. After 8 seconds of short-term 
calculation, the final clustering results was obtained as shown in Fig. 6C, where different 
colors represent different class clusters. They were classified into 14 class clusters, 6 of them 
contained the samples of known vulnerabilities, and the remaining 8 ones were the new class 
clusters. We also clustered the remaining 201 samples to verify the correctness of parameters. 
The clustering process and results were further analyzed in the following part. 
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Fig. 6. Clustering process. (A)Pointer distribution of 1041 samples. (B)Clustering results with 
Cut-Off-Kernel algorithm. (C)Clustering results with Gaussian-Kernel algorithm. (D)Decision graph 

for (C). (E)Clustering result of 201 samples. (F)Partially enlarged view of (C). 
 

4.1 Selection of Cutoff Distance Parameter dc 

Reference [15] points out that the algorithm is only sensitive to the relative value of iρ . 

Hence for the large data sets, the analysis result is considerably robust to the selection of the 
cutoff distance parameter dc. In this paper, the Euclidean distances of all points to the other 
ones were sorted from small to large, and the x-th value was selected as dc. Study showed 
that a x selected from 2% to 10% would not affect the final clustering results. 
 

4.2 Improvement of Local Density Algorithm 

Reference [15] uses the Cut-Off-Kernel algorithm to calculate the local density iρ . Result 

shows that this algorithm is very effective in clustering the spherical class cluster, but not for 
the aspherical ones. However, in Fig .6A, most class clusters were the aspherical ones. The 
clustering effect of the Cut-Off-Kernel algorithm is shown in Fig. 6B, where several class 
clusters were mistakenly classified into 2 or more clusters, indicating that the Cut-Off-Kernel 
algorithm could not properly handle the data in this paper. Therefore, the Gaussian-Kernel 
algorithm [17] was adopted, with the calculation formula as follows. 

2( )
( )

ij

c

d
d

i
j

eρ
−

=∑  

The clustering effects were shown in Fig. 6C, and the different class clusters were 
accurately classified. 
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4.3 Automatic Selection of Class Cluster Center 

Fig. 6D shows the calculated values of iρ  and iδ . As suggested by the figure, the points 

with great values of iρ  and iδ  are characterized by multiple neighboring points and far 

distance from the center points of other class cluster. They should be considered as the center 
points of the class clusters. However, to automatically select these points, a threshold value 

should be set for iρ  and iδ . The calculation method in this paper is as follows 

(max( ) min( )) min( )thres i i irateρρ ρ ρ ρ= × − + , (max( ) min( )) min( )thres i i irateδδ δ δ δ= × − +  

After many experiments, we set 
rateρ =0.07, rateδ =0.05. To verify the correctness of 

them, we clustered 201 samples by using the same value of 
rateρ  and rateδ . As Fig. 6E 

shows, the clustering results is satisfactory. 
 

4.4 Elimination of Noise 

There are several isolated points in Fig. 6C, which may be due to one of the following three 
conditions. 
1) It belong to a vulnerability category, but it is significantly different from the other samples 
in the category. 
2) It belong to some vulnerability category, which contains only one sample. 
3) It belong to a not-UAF vulnerability category, and the points around y=0 are mostly of 
this type. Since the causes of not-UAF vulnerability are irrelevant with the dangling pointers, 
it is difficult to find the candidate set of the KDP, leading to a clustering eigenvalue of 0 on 
y-axis. 

All these isolated points were referred to as noise in this paper, which had no significant 
impacts on the experimental results after being eliminated. The elimination method was to 

find the points with small iρ  but large iδ  from the decision graph in Fig. 6D. This 

feature suggested that these points had few neighbors and were very far from the other center 
points, should be set as noises. The calculation method is omitted. 

 

4.5 Difference Between Exploitable and Unexploitable UAF Sample Clusters 

Fig. 6F is the partially enlarged view of Fig. 6C. The left class cluster presents the class 
cluster of unexploitable vulnerabilities, while the right presents the exploitable ones. It can 
be obviously seen that both of them show a great changes in y values, because there are 
difference between the KDP candidate sets of samples. It can be also obviously seen that the 
left class cluster shows little change in x values and are distributed in a strip, because the 
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crash context of them are unitary, while the right one shows great changes in x values and are 
scattered, because the released memory may be occupied by various objects, leading to 
multiple crash locations in the program. Moreover, the right class cluster obviously contain 
both the subcategories that perform and do not perform Occupy, which is consistent with 
Property 4. It is observed that there are 6 exploitable vulnerability categories and 8 
unexploitable vulnerability categories in Fig. 6C.  
 

4.6 Performance Comparison 

The parameter dc was adjusted, and the Gaussian-Kernel algorithm was employed to replace 

the Cut-Off-Kernel algorithm. The threshold values of iρ  and iδ  were set to 

automatically select the center of cluster, and the decision diagram was used to eliminate the 
noises. Through this series of processes, the 1,041 samples were classified into 14 different 
categories, with the statistical results in Fig. 7. In the figure, 6 were determined as 
exploitable vulnerability samples, which was consistent with the known vulnerabilities, and 
8 were determined as unexploitable vulnerability samples, which was manually verified. 
Another 15 noises were mistakenly classified. Through manual verification, 4 of them were 
not-UAF samples, 8 were new unclassified samples, and 3 belonged to the other classified 
categories. The primary cause of noise is the too small number of similar samples. The 
accuracy will be further improved, if more similar samples can be obtained through longer 
test. 
 

 
Fig. 7. Cluster result statistics. 

 
We also compared the performance of ADEDU with similar tools as described below. 
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A. Runtime Comparison 
Table 1 illustrates the comparison results of runtime between ADEDU, FileFuzz[22], 

MSEC[27] and UnDangle[12] which can find dangling pointers. ADEDU analyzed 1041 
samples in 12692 seconds, average 12.2 seconds per sample. UnDangle tool must run on the 
TEMU simulator to carry out taint analysis, at a slow running speed. As it takes 165 seconds 
to analyze a IE8 sample, this method is not suitable to analyze a large number of 
vulnerability samples. Although FileFuzz and MSEC run faster than ADEDU benefit from 
their simple analysis mechanisms, they get very low accuracy in deduplication and 
exploitability determination, as showed in Part B and C. 

 
Table 1. Runtime Comparison Result 

 Object Base Platform Analysis Mechanisms Runtime (Seconds) 
ADEDU IE8 Windbg Recording pointers, call stack, 

using clustering algorithm. 
12.2 (Average) 

UnDangle IE8 TEMU Taints Analysis. 165 
FileFuzz IE8 None Compare call stack of 

exception. 
6.4 (Average) 

MSEC IE8 Windbg Analyzing context of exception. 7.8 (Average) 
 
B. Comparison of Accuracy in Samples Deduplication 

Table 2 illustrates the comparison result of accuracy in samples deduplication between 
ADEDU and FileFuzz, which is used to find vulnerabilities and deduplicate samples. The 
method used by FileFuzz is to summarize the crash context, and thus to compare the 
summaries so as to determine whether they are the same vulnerability. As this method only 
focuses on the limited information, it cannot distinguish the samples of the same 
vulnerability cause in different forms of crash, and its accuracy in deduplicating UAF 
samples is very low. 

 
Table 2. Comparison Result of Accuracy in Samples Deduplication 

 Samples 
Number 

Number of 
Category  

Number of Correctly 
Classified Samples 

Number of Wrongly 
Classified Samples 

Accuracy 
Rate 

ADEDU 1041 14 1026 15 98.6% 
FileFuzz 1041 856 167 874 16% 
 
C. Comparison of Accuracy in Exploitability Determination 

Table 3 illustrates the comparison result of accuracy in exploitability determination 
between ADEDU and MSEC, which can help to determine the exploitability when a program 
crashes during debugging. In ADEDU, since deduplication and exploitability determination 
are completed in the same clustering process , the accuracy rates of them are same, i.e. 
98.6%. On the contrary, MSEC can only provide static analysis of the stack environment and 
code context during crashes, lacking the dynamic analysis of the subsequent data flow and 
control flow, with a low accuracy. 
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Table 3. Comparison Result of Accuracy in Exploitability Determination 

 Samples 
Number 

Number of Exploitable Samples Number of Unexploitable Samples Accuracy 
Rate Correct Wrong Correct Wrong 

ADEDU 1041 517 3 509 12 98.6% 
MSEC 1041 327 193 231 290 53.6% 

5. Related Work 
Studies on UAF vulnerability: Some debugging tools such as Purify [18] can find the 
dangling pointers by checking whether the pointers are pointing to the live memory. But this 
method cannot detect the dangling pointers for which the memory areas have been reused. 
Electric Fence tool[19] and PageHeap technique [20] use a new page for each allocation and 
rely on page protection mechanisms to detect dangling pointer uses, but it can hardly locate 
the root of the dangling pointer. TIE [21] uses the constraint solving approach to infer the 
dangling pointers, with high calculation cost. Based on dynamic taint analysis, UnDangle 
tool [12] follows the allocation and release of all pointers in the program, and it is evidently 
effective in finding and eliminating the dangling pointers in UAF vulnerability. However, 
this tool must run on the TEMU simulator to carry out taint analysis, at a slow running speed. 
As it takes up to 1,982 seconds to analyze a single complex vulnerability sample, this 
method is not suitable to analyze a large number of vulnerability samples. In this paper, the 
candidate set of the KDP was extracted from a large number of pointers, and the eigenvalues 
can be extracted in a short period of time. 
Automatic deduplication of vulnerability samples: The method used by tools such as 
FileFuzz [22] and SAGE [23] is to summarize the crash context, and thus to compare the 
summaries so as to determine whether they are the same vulnerability. As this method only 
focuses on the limited information, it cannot distinguish the samples of the same 
vulnerability cause in different forms of crash, and its accuracy in deduplicating UAF 
samples is very low. In this paper, the eigenvalues were extracted from the samples, fast 
clustering was conducted on a large number of samples, and the samples were accurately 
deduplicated in a short time according to the clustering results. 
 
Automatic determination of the exploitability of vulnerability: Based on patch analysis, 
APEG [24] is an automatic generation tool of attack codes that can exploit the vulnerability, 
requiring the support of the program patch. Following the approach by APEG that the 
vulnerability exploitability can be described as the predicate of a program's state space, AEG 
[25] can automatically finish the whole process from vulnerability discovery to exploitability 
analysis to the generation of attack codes. However, this tool is designed for the source code, 
and can only handle two types of vulnerabilities, the returned-address overwriting in stack 
and the format string overflow. MAYHEM [26] integrates the advantages of on-line and 
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off-line symbolic executions and is mainly used for testing binary programs, where 
determining the exploitability of vulnerability samples is based on modification of AEG. 
However, lacking the support of type and structural information of high-level languages, its 
efficiency and accuracy of determination is lower than AEG. In addition, on the basis of 
Windbg, Microsoft has developed the MSEC tool [27], which can help to determine the 
exploitability when a program crashes during debugging. This tool can provide static 
analysis of the stack environment and code context during crashes, lacking the dynamic 
analysis of the subsequent data flow and control flow, with a very low accuracy. Since the 
method of exploiting UAF vulnerabilities is unique, the above techniques are not entirely 
suitable for determining the exploitability of UAF vulnerability. In this paper, the 
characteristics and properties of UAF vulnerabilities were analyzed, and their exploitability 
was accurately determined by observing the shapes of class clusters. 

6. Conclusions 

In this study, by using the fast clustering algorithm by density peaks, an approach was 
proposed to deduplicate UAF samples and to determine their exploitability. By analyzing the 
properties of UAF vulnerabilities, an extraction method for the sample eigenvalues was 
constructed, consuming an average of 12.2 seconds for each sample. An advanced fast 
clustering algorithm was used to cluster the vulnerability categories of a lot of samples, 
thereby accurately and rapidly screening duplicated samples, conducting the clustering of a 
thousand samples in 8 seconds. By observing the shape of class cluster in the clustering 
results, the exploitability of the UAF vulnerability can be accurately determined, with an 
accuracy of 98.6%. The proposed approach is particularly suitable for testing the web 
browser software, where a lot of vulnerability samples are obtained by Web Browser Fuzzing. 
But there are also some problems, for instance, the accuracy depends on whether the sample 
set is sufficient, and too few vulnerability samples in a single category will lead to failure to 
identify this type of vulnerability. In addition to increasing test time to increase the number 
of samples, the better solutions should be provided in further researches. 
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