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Abstract 
 

The verification of data integrity is an urgent topic in remote data storage environments with 
the wide deployment of cloud data storage services. Many traditional verification algorithms 
focus on the block-oriented verification to resolve the dispute of dynamic data integrity 
between the data owners and the storage service providers. However, these algorithms 
scarcely pay attention to the data verification charge and the users’ verification experience. 
The users more concern about the availability of accessed files rather than data blocks. 
Moreover, the data verification charge limits the number of checked data in each verification. 
Therefore, we propose a mixed verification protocol to verify the data integrity, which rapidly 
locates the corrupted files by the file-oriented verification, and then identifies the corrupted 
blocks in these files by the block-oriented verification. Theoretical analysis and simulation 
results demonstrate that the protocol reduces the cost of the metadata computation and 
transmission relative to the traditional block-oriented verification at the expense of little cost 
of additional file-oriented metadata computation and storage at the data owner. Both the 
opportunity of data extracted and the scope of suspicious data are optimized to improve the 
verification efficiency under the same verification cost. 
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1. Introduction 

Remote data storage services are increasingly turning into an essential part of people’s 
daily life due to convenient communication and devices, and no distance and storage capacity 
constraints. Recently, many applications built on remote data storage platforms are 
increasingly emerging. For instance, data owners (abbreviated to the owner) store their own 
data in the cloud for users to access, such as Twitter and The New York Times running on 
Amazon infrastructure. The interested users subscribe owners’ data services to get the 
information they need. However, no storage service can be completely reliable and trusted, i.e., 
all storage services may potentially lose or corrupt owners’ data [1]. The storage service 
providers (abbreviated to the server) may be driven or attacked by malicious motives due to 
the vulnerabilities such as software bugs, operation failures, and different management levels. 
Even worse, some servers might drop off owner’s data that have not been accessed or rarely 
accessed to save the storage space and then declare that the data are still intact [2]. Many data 
integrity verification algorithms [3–10] have been proposed to check the correctness of data in 
the untrusted servers. In these algorithms, a public third-party auditor (abbreviated to the 
auditor) is requested to fairly verify owner’s data integrity as either side of server or owner 
cannot be guaranteed to provide unbiased verification result. According to the service 
agreement [3], the users are naturally chosen as auditors to execute the data integrity 
verification.  

However, the traditional verification algorithms are facing new problems as the volume of 
the big data stored in the cloud is very huge. Also, these problems put forward new 
requirements: 1) Minimum verification cost. Reffering to the existing storage service charge 
(e.g. Amazon EC2 pricing), all verification cost should be undertaken by the auditors. Hence, 
the auditors should pay the minimum charge for the data verification. 2) Maximum coverage 
of checked data. The existing verification algorithms mainly execute the block-oriented 
random verification [3, 11]. Thus, only a part of data stored in the cloud can be checked in each 
verification. The greater the ratio of checked data is, the more reliable the data storage is. 3) 
Better user experiences. These existing algorithms pay more attention to each block rather 
than each file due to the special cloud storage structure. Nevertheless, the users care more 
about the integrity of each file since they are influenced by the traditional operation system 
which is based on each file. Recently, with the wide deployment of various data services such 
as e-Business, e-Library, and e-Learning, the number of data stored in the cloud increases at 
geometric series, especially the small files with the size ranging from a few KBytes to dozens 
of MBytes. For instance, a shared parallel file system at the National Energy Research 
Scientific Computing Center of USA showed that it contains over 13 million files, 99% of 
which were under 64 MBytes and 43% of which were under 64 Kbytes. Also, referring to 
Zipf’s law, the number of small files often occupies a greater proportion in data storage. 
Therefore, the checked data unit should be coordinated to meet users’ experiences. 

In this paper, we improve the file-oriented verification algorithm in the metadata 
generation and verification field to meet the need of small files’ verification. 
To the best of our knowledge, we first propose a novel mixed verification method to verify the 
data integrity, which combines the file-oriented verification and the block-oriented 
verification. The mixed verification identifies not only coarse grained data units (i.e., files) but 
also fine grained data units (i.e., blocks) by different verification metadata. Also, it rapidly and 
accurately identifies all corrupted or lost blocks in the checked files. Specifically, a 
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file-oriented verification algorithm detects the potential corrupted or lost files to limit the 
scope of suspicious data in massive files, and then a block-oriented verification algorithm 
identifies all corrupted or lost data blocks in these suspicious files which have been checked. 
Our scheme optimizes the verification cost and efficiency. The theoretical analysis and 
simulations show that the file-oriented verification algorithm is an excellent verification 
method for massive small files, and the mixed verification algorithm is a high efficient method 
to locate the corrupted blocks in massive files. 

The remaining of the paper is organized as follows. In section 2, we briefly summarize the 
current researches on the verification of data integrity. Section 3 describes the verification 
model, adversary model, and security goals. Section 4 improves a file-oriented verification 
metadata. Section 5 proposes a mixed verification scheme based on the block-oriented and 
file-oriented verification. Section 6 analyzes the security of algorithm. Section 7 evaluates the 
performance of algorithm by simulations. Finally, section 8 concludes the contributions of this 
paper and presents future extension to the work.  

2. Related Work 
Since Deswarte et al. [3] introduced a homomorphism-based method to solve the verification 
of remote data integrity, many representative results are constantly achieved. Ateniese et al. 
[12] and Juels et al. [6] proposed the Provable Data Possession (PDP) and Proofs of 
Retrievability (PoR) to check the correctness of data in an untrusted server respectively. These 
methods utilize the RSA cryptographic technology to generate the verification metadata (or 
metadata for short) and then audit the integrity of data without retrieving the entire data by 
sampling strategies. Seb´e et al. [4] subsequently proposed a checking protocol to support the 
verification of dynamic data. Zhou Hao et al. [5] adapted this protocol to satisfy the demand of 
public verifiability. Cong Wang et al. [13] combined the public key based on homomorphic 
authenticator with random masking to achieve the data privacy-preserving in the process of 
data integrity verification. Soon afterwards, they [14] improved the algorithm to cope with the 
data in multiple clouds. Zhu et al. [15] and Yang et al. [16] proposed a dynamic audit service 
for outsourced storage. Recently, Wang et al. [11] advanced a homomorphic authenticable 
ring signature (HARS) in the privacy-preserving public auditing for shared data in the cloud 
(Oruta). Liu et al. [10] prevented DSP from concealing the data corruption. Hwang [17] 
exploited the detecting illegal signature technology and public verification scheme based on 
BLS short signature technology, and proposed a data integrity verification scheme to report 
locations of corrupted blocks. 
  However, the homomorphism-based method above costs a huge computational time to verify 
the big data due to the exponentiation operation of large integers. Another popular verification 
method is to utilize the hash-based method. The hash function is utilized to create one MAC 
(Message Authentication Code) for each data block to authenticate data block’s integrity. To 
build a digest for all data blocks, Juels et al. [6] constructed a Merkle tree to merge these 
MACs together by hash or XOR. Also, the Bloom filters were used to check data correctness 
under data privacy-protecting [16]. Aditya et al. [7] replaced the individual hashes of data 
blocks with it to check the data integrity. Even though this method shortens the computational 
time of verification relative to the homomorphism-based method, it cannot resist the attack of 
the metadata replaying as it only supports the verification to execute once.  

Considering the feature of data in the cloud storage, more and more researchers already 
have their focus on the fundamental object in verification changed from a file [19] to a block 
[11, 12]. Unfortunately, the verification cannot cover all blocks in the file since only a part of 
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the file is checked by the data random sampling in the traditional verification algorithms. Thus, 
some static data (i.e, unchanged data) such as precious document files may not be checked in 
the verification. Considering that these verification algorithms incur heavy computation cost 
of the auditor [2], we utilize the Bloom filter to generate the metadata and reduce the 
computation cost in the verificaiton process.  

3. Models and problem statement 

3.1 System model and assumptions 
In this section, we give an overview of the data verification model based on PDP. Generally, 
once an owner stores her data into a server’s storage space, the server has the responsibility to 
protect the data integrity. Otherwise, the owner will claim compensation against the server for 
the data corruption. Also, the owner evaluates the quality of storage service to decide which 
server to be chosen. In [20] and [2], the authors both mentioned an organizer to organize the 
verification. Considering that an additional trusted organizer isn’t practical in cloud storage, 
and people who are not related to the storage service have no desire to verify the data due to the 
verification charge. We advise each user, who accesses the data, to act as the auditor to 
independently check the data integrity and then share the data verification results among each 
other. That is to say, the request of data verification is launched while a user doubts the 
integrity of accessed data. Without a doubt, the verification will cost the server and the auditor 
the additional resource of computation and transmission. For the server, the frequent and 
unnecessary verification request will affect the performance of the storage service. Certainly, 
the verification charge also limits users’ verification request. Thus, the users have to balance 
the data verification between the verification cost and the suspect data.  

In the verification model, there are three actors as shown in Fig. 1, i.e., server, owner, and 
auditor (user). The process of verification is composed of four phases. The first phase is to 
prepare the metadata for each data unit by the owner. The owner computes the local metadata 
via choosing appropriate metadata generation algorithm, and then uploads her data files and 
signed local metadata into the server. The second phase is to issue the request of data 
verification by the auditor. The third phase is to recompute and return the remote metadata by 
the server. The fourth phase is to compare the pairs of metadata (i.e., the local metadata and the 
remote metadata) by the auditor and then judge whether the corresponding data are intact. 

 
 

Fig. 1. The verification model of data integrity. 
 

Assumption 1. Three actors are independent of each other for their own interests and 
cannot collude to deceive the adversary.  

As the previous description, each auditor independently checks the data integrity and then 
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shares the data verification results. Once the number of auditors achieves a certain value, the 
data verification results can be trustworthy referring to the existing research and theoretical 
proof. Here, we do not discuss the collusion attack due to space limitation. 

Let the storage period of owner’s data be T. Without loss of generality, we select the ith file 
iF to analyze the block-oriented verification, which is divided into n equal blocks, ijF , j ∈ [1, 

n]. Let 1G , 2G  and TG  be multiplicative cyclic groups of prime order p, 1g  and 2g  be 
generators of 1G  and 2G  respectively. Let e : 1G × 2G → TG  be a bilinear map,  and 
ψ: 1G → 2G  be a computable isomorphism withψ( 1G )= 2G . Let H:{0, 1}∗→ 1G  be a public 
hash function, which maps a string {0, 1}∗ into an element in 1G  (i.e., a point on an elliptic 
curve). Each block-oriented metadata (BoM) for each block is prepared and then used to 
execute the block-oriented verification. Referring to the algorithms in [5] and [11], we design 
an algorithm to verify the data block ijF . 

In first phase, the owner randomly picks a prime z as her private key, and computes zgw 2=  
as her public key. Then, the owner randomly chooses a positive integer a, and computes 

ag1=g  and ijij FidFHg ).(
1=ϑ , where idFij .  denotes the identity of ijF . It sets )( /1 zβψσ = . 

In second phase, the auditor sends chal<w, idFij . > to the server.  

In third phase, after the server receives chal, it computes ijij FidFHg ).(
2

' =ϑ  as the proof of data 
integrity with respect to the block ijF , and returns 'ϑ  to the auditor. 

In fourth phase, once the auditor receives 'ϑ , she checks ),(),(
?

2
' wege σϑ = . If the equation 

holds, the given block ijF is intact and the auditor outputs “success”. Otherwise, it is corrupted 
and the auditor outputs “failure”.  

The outsourced data need to be repetitiously verified during the period T [15]. We define the 
duration of each verification from start to finish as one round, which is composed of two parts, 
i.e., the verification executing period et  and the idle period dt . The former is the duration of 
the verification executing. The latter is the idle time before the next verification. Assume it is 
enough to execute the verification t rounds in the storage period T. 

Assumption 2. All the verification information among the server, owner, and auditor is 
transmitted and distributed through authentic channels which can resist data tampering and 
intrusion.  

The existing data encryption technology provides many methods to authorize the data 
transmission channels and resist data tampering and intrusion. Due to space limitation, we do 
not discuss it here.  

Assumption 3. The probability of data corruption in the remote storage is very low.  
Without doubt, no owner is willing to outsource her data in the remote storage if she takes 

risks of huge data loss or corruption. 
Definition 1 (The ratio of sampled data). In the verification, the sampled data occupies a 

certain proportion of all the stored data, which is defined as Ω. For example, if the total 
number of blocks is N and the number of sampled blocks is n, we haveΩ=n/N. The ratio 
directly impacts the verification cost. 

3.2 Adversary model 
The goal of the data verification is to protect the integrity and availability of the outsourced 
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data. The greatest threat is the escape of data corruption, i.e., the lost or corrupted data are 
concealed and aren’t identified in the verification. The attacks of the adversary have three key 
methods. First, the server provides the false remote metadata to deceive the auditor while the 
stored data have been corrupted. Second, the server replays the remote metadata to pass the 
verification by utilizing the same remote metadata in the last verification. Third, the server 
easily escapes from the corrupted data being identified if less number of data are extracted in 
the verification. Here, the number of extracted data is limited by the verification charge. 

3.3 Problem statement and design goals 
The homomorphic-based technology is often applied in the verification as it can accurately 
identify the corrupted block and resist the attack of metadata replaying. However, the method 
has some problems.  

First, the method brings about huge verification cost while the verification faces the 
challenge of the big data. Naturally, the method incurs more computation overhead for the 
server and the auditor than the hash-based operation since it involves the exponential 
computation of large integers [4], which is also shown in Section 7. With the increase of the 
number of rounds, the verification should be improved to balance the trade-off between the 
verification cost (i.e., the verification computation, transmission, and storage) and verification 
efficiency. 

Second, the data random sampling in the traditional block-oriented verification reduces the 
probability of the small files being extracted. These verification algorithms randomly verify a 
part of all the data in the verification, and thus they are only a type of probabilistic proof of 
possession [22]. Assume there are two files (e.g., F1 and F2) which are divided into n1 and n2 
(n1<n2) equal blocks respectively. Also, assume that the number of data random sampling is Ns. 
The probability of blocks being extracted in F1 is less than that in F2 due to n1 / Ns < n2 / Ns. If 
the size of F1 is far smaller than F2, the blocks in the file F1 are hardly extracted in the 
verification. As the number of small files is very huge, their integrity directly influences the 
availability of the stored data. Thus, the verification should maximize the scope of checked 
data at each round to identify the lost or corrupted data with the minimum charge and the 
shortest time. 

Finally, the integrity of one file is more important than several blocks. The traditional 
verification is oriented to each block instead of each file in the remote storage to accommodate 
the verification of dynamical data. These verification algorithms scarcely pay attention to each 
file, especially some precious and small files, due to the special cloud storage structure. For 
example, in the Google cloud storage, owners’ files are aggregated and divided into fixed-size 
chunks, each with a basic storage unit of size 64 Mbytes. To conveniently read and write data, 
each chunk is broken up into several blocks of the size 64 Kbytes [19]. After owner’s data are 
stored into the cloud, their storage structure changes from the traditional file system to the big 
data storage system. Here, the size of each small file is slightly smaller or bigger than one 
block. However, from the user’s perspective, she is more interested in the integrity of each file 
instead of several blocks in the cloud storage, since a file is entirely convinced to be intact only 
if all the blocks in the file are at least verified to be intact once. Therefore, the checked data 
unit should also be coordinated to meet the user’s need. 

4. Verification metadata design 
As the previous analysis, every block isn’t verified in each round, especially some blocks in 
the small files. Hence, it is more significant for an entire file with a small size to be verified in 
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each round. It is more suitable for each file to be chosen as another basic verification data unit 
from the user’s perspective. In the following, we generate each metadata for each small file, 
which is defined as the file-oriented metadata (FoM).  

Recently, a space-efficient data structure Bloom filter (BF) offers a potential possibility to 
shorten the verification computation cost, which has widely been applied in many network 
applications such as web caching, IP traceback, and packet classification [23] , etc. The BF has 
the advantage in judging whether an element is a member of a set, while at the risk of a low 
probability of false positives. It is a bit array composed of m bits. Each position of the array is 
initially set to 0. It provides several simple operations such as the element inserting and 
querying. Assume there are g files. Without loss of generality, we analyze the ith file Fi, 
i=1,2,…,g. For the inserting operation, when a new element Fi is added, k array positions 
H1(Fi), H2(Fi),…, Hk(Fi) are set to 1 after k different hash functions H1(.), H2(.),…, Hk(.) are 
fed back to hash Fi. For example, three array positions are set to 1 by three hash functions in 
Fig. 2. For the querying operation, if an element y is queried whether it is in the set, it is 
mapped into k array positions by the same k hash functions. If any of k array positions is 0, the 
element y does not belong to the set. Moreover, if all of k array positions are 1, either the 
element is in the set, or these bits are disturbed by other elements in the insertion process 
(called as false positive). We utilize the BF to generate the metadata of small files and decrease 
metadata’s computation and storage overhead since it has a strong space and computation time 
advantage over other data structures. Due to the space limitations, we do not discuss the 
security of the BF in this paper. 

 
Fig. 2. File-oriented metadata based on the Bloom filter. 

4.1 Metadata generation 
Each file independently generates the metadata based on the BF by a set of hash functions, 
where the size of each metadata is similar to [7]. Even if the existing algorithms based on the 
BF can perform a simple verification, they don’t resist the attack of the metadata replaying. 
Intuitively, if the verification persists for t rounds during the period T, it must generate t 
metadata for each file to resist the attack of the metadata replaying. However, even if the 
computation time based on the BF at each round decreases, the cost of metadata computation 
and storage increases remarkably while the verification executes t rounds or data blocks in 
every file are frequently updated [25]. Thus, we need to lower the value of t and then optimize 
the metadata generation by analyzing the frequency of files’ verification in the period T. 
  To store these metadata and identify each other, each file’s identification is appended and 
then bonded together with the corresponding file. The file’s identification occupies g2log  bits. 
Let the length of the BF be m bits. Each metadata at least occupies m+ g2log  bits to support 
the verification at one round, which is similar to the metadata for each block in [18]. If the 
amount of rounds achieves to t, all the metadata for the file Fi  theoretically occupy 
 

)log()( 2 gmtFS i +=                                    (1) 
 
bits. The more the number of files is, the more space the metadata occupies. To decrease the 
storage space of the metadata, we optimize the structure of all the individual metadata for each 
file, i.e., t individual metadata for each file are merged into one metadata. 
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Each metadata for each file needs to support the verification t rounds. A segment of the 
metadata is extracted to execute the verification at one round, the size of which is m’+ g2log  
bits. There are two optional schemes to design the metadata to support the verification from 

one round to t rounds. Referring to section 4.2, let 2/kem = while the number of hash 
functions is k. Scheme one is to increase the length of the metadata from m bits to tm bits. Thus, 
each metadata occupies tm+ g2log (i.e., 2/kte + g2log ) bits, where tm bits are divided into t 
segments each with the length of m bits in Fig. 3(a). Each segment which is formed by an 
independent BF with m bits and k hash functions supports the verification at one round. 
Scheme two is to increase the number of hash functions from k to tk, in Fig. 3(b). For tk hash 
functions, the length of each metadata occupies 2/tke + g2log  bits while 2/kem = for k hash 
functions. Obviously, comparing the two schemes, we find 2/tke + g2log > 2/kte + g2log  
due to ktk tee > . That is to say, the scheme one is appropriate to generate the metadata for 
each file. Thus, we let the length of each metadata be tm bits. At each round, it uses m bits of tm 
bits in the metadata to execute the verification, which are called a sub-metadata. Thus, each 
metadata is composed of t sub-metadata.  The metadata of the file Fi occupies 
 

gtmFS i 2log)( +=                              (2) 
 
bits. 

      
(a) Extending the array from m bits to tm bits        (b) Extending the number of hash functions from k to tk 
 

Fig. 3. File-oriented metadata based on the Bloom filter. 
 
  Certainly, the amount of the metadata grows with the increase of the number of files. Even if 
the BF provides convenient operations of inserting and querying, it does not support deleting 
operation. The dynamic blocks or files need the corresponding metadata to be updated and 
maintained, especially deleted. If a file needs to be updated or deleted, it only deals with the 
metadata corresponding to the file instead of interfering with each other. Thus, the 
file-oriented metadata based on the Bloom filter is suitable for small files. 

4.2 Parameters analysis 
The size of metadata. Comparing the equation (2) with (1), we know that the storage cost of 
the merged metadata is gt 2log)1( −  bits and obviously less than the unmerged metadata. 
However, with the increase of the number of files, the storage space of all the metadata is very 
considerable. Hence, the size of each metadata should be designed as small as possible. 
Moreover, to reduce the disturbance of the false positives in the BF, the length of bit array, m, 
can’t be too short. Let the probability of false positives be f, m has a close relationship with the 
number of hash functions, k, and the number of inserted elements, q, by 2)2/(lnln fqm −=  and 

)/(2ln qmk = . 
As each element in the BF is corresponding to each file, q is set to 1. Changing the equation 
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)/(2ln qmk = , we have 2/kem = . Therefore, m is optimized to get a lower boundary by 
 

}
)2(ln

ln,
2

min{ 2
fem

k −
= .                             (3) 

 
It is a tradeoff between k and f. As m must be an integer, it should get value by  m , where 

 .  means the smallest integer greater than the current value. 
   The number of rounds. In general, there are two reasons to cause the data corruption or loss. 
One is data’s natural corruption (abbreviated to natural corruption) with the increase of the 
storage time. The other is data’s malicious corruption (abbreviated to malicious corruption) 
since the server deletes owner’s data. The probability of both corruptions is time-related and 
equal to 0 at the start stage of data storage. Let the rate of the natural corruption for at least one 
data unit corrupted after a unit time be α and the malicious corruption be β . In [25], the 
authors found that the linear cumulative probability of at least one data unit mismatch after 17 
months for enterprise class disks is 0.6×10-3, where the data unit is a file system block of the 
length 4kB. In this case, α is equal to 0.35×10-4 per month. Thus, the initial probability of the 

natural corruption, α
0p , is equal to 0, and the cumulative probability after j months, 

α
jp , is 

equal to jp ×+αα
0 . By extension, we let the initial probability of the malicious corruption, 

β
0p , equal to 0, and the cumulative probability after j months, β

jp , equal to jp ×+ ββ
0 . Thus, 

the cumulative probability of at least one data unit corrupted after j months, jp , is  
 

βαβαβα
jjjjjjj ppppppp −+=−−−= )1)(1(1                              (4) 

 
where β  is initialized to 0 and then changed by the iterative computation after the first round. 
For example, once jp  achieves the threshold p, the verification must be executed once. If 

some corrupted data are identified in the verification, the actual value of jp , '
jp , is got via the 

number of corrupted data divided by the total number of extracted data at each round [26]. If 

'
jp  is greater than α

jp , we have β
jp = α

α

j

jj

p
pp

−
−

1

'

 while applying the equation (4). Applying  

jp j ×= ββ  and jp j ×=αα , we modify  
 

)1(

'

jj
jp j

α
α

β
−
−

= , if jp j ×>α' .                             (5) 

 
If '

jp  is less than α
jp , we still have β =0 and alter α =0.35×10-4 to α = '

jp /j.  Certainly, if 
β >0, the malicious corruption happens in owner’s data. 
   To analyze the minimum value of t, we assume that each block of 4k bytes must be verified 
every 2.8 months and 28.3 months while p=0.0001 and p=0.001 respectively once α  achieves 
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to 0.35×10-4. With the increase of each block’s length, jp  also varies. Given a block B of the 
length |B|, which is an integer multiple of 4k bytes. In other words, the block B is composed of 
nb blocks each with the length 4k bytes, i.e., nb=|B|/4k. Thus, the cumulative probability of B’s 
natural corruption after j months, )(Bp j

α , is  
 

bn
jj pBp )1(1)( αα −−=                              (6) 

 
Once )(Bp j

α  achieves to p, the block B must be verified. Under the natural corruption, the 
duration of the block B corruption, )(Bj , is 

 
α/)11()( bn pBj −−=                              (7) 

 
months. For example, applying the equation (7), each block must be verified once after )(Bj  
months as shown in Table 1. The lower the threshold p is, the shorter the duration of each 
block corruption is. Similarly, the longer the length of each block is, the shorter the duration of 
each block corruption is. 

 
Table 1. The relationship among data corruption, the block length, and p while α =0.35×10-4 

Block length j(B) (months) 
p=0.0001 p=0.001 

4kB 2.8 28.3 
8kB 1.4 14.2 

16kB 0.7 7.1 
We vary the values of α in Table 2. The results show that the smaller the value of α  is, the 

longer the duration of each block corruption is. 
 

Table 2. The relationship among data corruption, the block length, and α while p=0.0001 

Block length 
j(B) (months) 

α =0.35×10-3 0.35×10-4 0.35×10-5 
4kB 0.28 2.8 28.3 
8kB 0.14 1.4 14.3 

16kB 0.07 0.7 7.1 
Similarly, we further analyze the file Fi which is divided into n blocks. Referring to the 

equation (6), the cumulative probability of the file Fi corrupted after j months is 
nN

jjj pFp )))1(1(1(1)( −−−−= . If )(Bp j  achieves to p after j months, )( jj Fp  is equal to 
 

n
jj pFp )1(1)( −−= ,                             (8) 

 
where  j also meets the equation (7). Thus, the end time of the vth round, Tv, is 
 

)(BjvTv ×= , ],1[ tv∈ .                           (9) 
 

Let v=1, T1=j(B), where T1 indicates the interval of every round. We have 
 

         1/TTt = .                                     (10) 
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To further analyze the number of rounds t in the period T, we choose a series of different 

length files with each block of the fixed length 4k bytes. Let p be equal to 0.0001. Applying the 
equations (7), (9) and (10), we get the different values of t in Table 3 while T is set to a series 
of values. A longer T corresponds to a larger t. The relationship between T and t has nothing to 
do with the file length since the file corruption depends on the cumulative probability of every 
block’s natural corruption. Thus, the interval of the verification between two continuous 
rounds must be adjusted according to the period T. 
 

Table 3. The variety of t 
T (years) T1(months) t(rounds) 

1 2.8 4 
4 2.8 17 
8 2.8 34 

 
Assume there are 10,000 files stored in a server, and the average length of each file is 4MB. 

In [4], the server takes 591.1 milliseconds to verify one file. Thus, the value of et  for all files at 
a round is approximately 1.64 hours without utilizing the parallel computation. To identify the 
corrupted blocks as early as possible, the number of rounds for the block B is adjusted 
according to the block’s length and p in the period T by 

 
                             )(/ BjTt = .                                        (11) 

The number of sub-metadata. The number of sub-metadata is closely related to the number 
of rounds. The verification isn’t always executed for every file at each round since not all of 
the files are corrupted. Each FoM is composed of t sub-metadata, where the value of t should 
be optimized. 

Considering )(Bp j
α  achieves to p after j months. Applying the equation (7), )( ij Fp  is equal 

to 1-(1-p)n after j months. Assume it is enough for x sub-metadata in each FoM to verify the 
corresponding file t rounds, where x is an integer between 1 and t, i.e., 1≤x≤t. Hence, each FoM 
at least occupies x∗m+ g2log  bits. Since the probability of block corruption in a file is uniform, 
it is enough to identify the corrupted file with the probability of 0.95 while 
 

tPPtPxtPPtP +−<<−− )1(96.1)1(96.1                          (12) 
 
and 1≤x≤t, where P is Pj(Fi). The proof of the equation (12) is shown as follows. 

Let v
iX , v∈[1,t], be the state of the ith file, Fi, at the vth round. If Fi is intact at the vth round, 

v
iX =0, otherwise, v

iX =1. Hence, ∑= =
t
v

v
iXx 1  meets the binomial distribution B(t,P). To 

ensure x being close to the amount of corrupted files by the probability of 0.95, we have the 
following equation using Chebyshev’s inequality by 

 

                   95.0}Pr{ =<− εP
t
x ,                              (13) 
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while a positive number εexists. In probability theory, 
)1( PtP

tPx
−

−  is approximately subject 

to a normal distribution by the de Moivre-Laplace theorem, and then we have 

95.0}
)1()1(

Pr{ =
−

≤
−

−
PtP

t
PtP

tPx ε . Simplifying it, we have 95.0)1
)1(

(2 =−
− PtP

tεφ , i.e, 

975.0)
)1(

( =
− PtP

tεφ . Due to 975.0)96.1( =φ , we have tPP /)1(96.1 −=ε . Applying it into 

the equation (13), we have 95.0}
)1(96.1

Pr{ =
−

<−
t

PP
P

t
x . Simplifying it, we have 

95.0}96.196.1Pr{ =+<<− tPxtP ππ , where )1( PtP −=π . Thus, we have the equation (12). 
   Moreover, the metadata updating and deleting is also important. If any block in a file is 
updated or deleted, both the FoM and the BoM for the file must be updated or deleted. Before 
the block is updated or deleted, the file is first downloaded from the server to the local. For the 
block updating, the metadata of blocks and files are recomputed by the owner while the block 
is updated at the server, then the signed BoM are updated at the server and the FoM are 
replaced at the owner. For the block deleting, the FoM are recomputed and replaced at the 
owner. Simultaneously, the block and its BoM are deleted respectively at the server. 

5. Verification protocol 

5.1 File-oriented verification 
Referring to the verification model, the owner firstly sets the appropriate initial parameters 
such as m and t respectively by applying the equation (3) and (11), and then computes the local 
metadata via choosing appropriate hash functions and random codes to generate a local FoM 
for each file. These FoM are stored in the local space.  

Secondly, the auditor requests the local metadata of the distrusted files from the owner, and 
simultaneously sends the challenge information about these files (i.e., hash functions and 
random codes) to the server. In this case, k hash functions are chosen from tk ones in each 
verification. The suspicious files in the suspicious data verification need to be selected before 
they are challenged. These files are chosen according to the cumulative probability of the 
corrupted files over a period of time. For example, once )( ij Fp  achieves 

np)1(1 −− applying the equations (4), (7) and (8) after j months, the file Fi is selected as the 
suspicious file. 

Thirdly, the server recomputes each remote FoM of these files as the proof by the uniform 
hash functions, codes and initial parameters similar to the owner. 

Finally, the auditor compares pairs of metadata (i.e., the local metadata and the remote 
metadata) and then judges whether these files are intact. For example, applying the querying 
operation of the Bloom filter, after k hash functions and random codes are chosen, if k array 
positions of a file’s local metadata and remote metadata are all 1, the file is determined to be 
not corrupted. 

5.2 Mixed verification protocol description 
Even if the file-oriented verification is superior to the block-oriented verification on the 
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verification cost as shown in section 7, it also has several defects. First, it results in the 
potential verification misjudgment due to the false positive of the BF. Second, it only 
identifies the corrupted files instead of the corrupted blocks. Even if a file is corrupted, not all 
blocks in the file are corrupted. Considering the efficiency of the file-oriented verification and 
the accuracy of the block-oriented verification, we propose a mixed verification protocol to 
deal with the data corruption in massive files. 

Definition 2 (The suspicious data verification). In process of data service, the auditor 
suspects the integrity of some small files, and then challenges them. The auditor extracts the 
suspicious files according to the cumulative probability of the file corrupted over a period of 
time. 

Definition 3 (The corruption locating verification). If the suspicious data verification 
fails, the auditor identifies the specific corrupted blocks in these suspicious files. On the basis 
of suspicious files, the auditor further identifies the corrupted blocks in these files. 

Based on the above consideration, we design a mixed verification protocol to rapidly locate 
the corrupted blocks in massive files and reduce the verification cost. We abbreviate the 
block-oriented verification, the file-oriented verification, and the mixed verification to 
BLOCK, FILE, and MIXED respectively.  
   Before the MIXED executes, the application condition of the FILE should be determined at 
first. Even if the FILE is oriented to each file, it cannot be utilized to scan all files in the remote 
storage due to the verification cost. The application of the FILE is affected by two factors. One 
is the importance of files. The other is the size of files. The former is classified by the value of 
data. In the field of archival science, it has strict criteria to divide the value of files, which 
mainly includes the content of document and the source of document. The owner can 
accurately distinguish her files referring to the correlative criteria. Due to the space limitations, 
we do not discuss it in detail here. The latter is limited by the similarity of small files. For small 
files, many similarity measurement methods are proposed to evaluate whether any file belongs 
to the small file. Also, we do not discuss it here. 

To perform the MIXED, we expand the verification model in Section 3 from four phases to 
seven phases. Specifically, the local FoM and BoM are generated in the first phase, and then 
the FoM are stored at the owner and the BoM are stored into the server. In the second phase, 
the users request the owner to send the local FoM corresponding to some distrustful accessed 
files, and then challenge them to the server. Here, these users are sent the local FoM 
simultaneously by the owners once the number of users meets the requirement that the 
verification results can be trusted. In the third phase, the server recomputes and returns the 
remote FoM to the users. In the fourth phase, the users compare the pairs of metadata to judge 
the distrustful files. Only if the certain number of users provides the same judgment on the 
same files, the verification results can be recognized. If the suspicious data verification fails, it 
executes the corruption locating verification in the three following phases. In the fifth phase, 
the user acts as an auditor to send chal<w, idFij . > of all blocks in these suspicious files to the 

server. In the sixth phase, the server computes and returns 'ϑ  as proof to the auditor. In the 

final phase, the auditor checks ),(),(
?

2
' wege σϑ =  and then identifies the corrupted blocks in 

these suspicious files. For example, there exists one corrupted block in g files. After g files are 
checked by the FILE, one distrustful file i is detected. Then, applying the BLOCK, the 
corrupted block j is identified as shown in Fig. 4. 
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Fig. 4. The corrupted block is identified by the mixed verification. 

6. Security analysis 
The security of the algorithm includes the verification correctness, metadata unforgeability 
and non-replay, and data security. Since the security properties of the homomorphic-based 
algorithms (i.e., correctness, unforgeability, etc.) have been discussed in many researches, we 
don’t discuss them in this paper. Any algorithm must correctly verify the data integrity. The 
attacks with regard to metadata are the metadata forging and the metadata replaying. 

6.1 The verification correctness 
The verification correctness is of crucial importance no matter which verification method is 
utilized, i.e., the FILE and the BLOCK. 

Theorem 1: Only if a corrupted file is identified by the FILE, the BLOCK at least detects 
one corrupted block in the file, and vice versa.  

Proof: A file’s integrity is the cumulative integrity of all blocks in the file. If a file is judged 
to be corrupted after it is checked by the FILE, it must have at least one corrupted block 
referring to the description of the FILE. All pairs of the BoM aren’t synchronously equal while 
they are verified by the BLOCK. Even if the number of corrupted blocks is ascertained, at least 
one corrupted block exists in the corrupted file. In other words, at least a pair of the BoM is 
unequal once after all pairs of the BoM for every block in the corrupted file are compared. 

Conversely, if one block in a file is corrupted, the FILE must find out that a pair of the FoM 
is unequal to each other by the probability of 1-f . However, the probability can be limited in a 
small range. On the one hand, we can set a smaller f to improve the accuracy of the data 
verification. Assume the probability of each file misjudged is ξ. Referring to the probability 
of false positives of the BF f, let ξ=f. Applying the equation (3), we know that the accuracy of 
the data verification approximately achieves to 100%, i.e., ξ=0, while f is close to 0. On the 
other hand, we increase the frequency of each file being verified during the period T to 
improve the correctness of the file verification. Even if the BLOCK provides the correct result 
of the verification for each block, it only verifies a small part of all data due to the limited 
computation overhead. Assume the frequency of each same file being repeatedly verified 
during the period T is t0, which is equivalent to the number of hash functions increasing from k 
to t0k in the BF. Correspondingly, the probabilityξdrops down from f to ke t

f
)10( −

 applying the 
equation (3). For example, ξ drops down from 1.0×10-3 to 1.6×10-164 while f =0.001 and t0 

increases from 1 to 2. The probability is very low and approximately achieves to 0. Without a 
doubt, we can compensate the lack of the FILE based on the BF about the verification 
correctness of each file via decreasing f and increasing the frequency of each file being 
verified. Therefore, the FILE also ensures the verification correctness of checked files. 
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6.2 The metadata unforgeability 
The metadata generated by the owner is an important criterion in the verification, and cannot 
be forged by the adversary. For the BLOCK, as the metadata unforgeability has been proved in 
[5] and [11], we don’t discuss it here. We only analyze the unforgeability of the FoM.  

Theorem 2: The forged FoM cannot pass the verification if not all pairs of k sub-metadata 
(i.e., the local and remote file-oriented sub-metadata) are equal. 

Proof: Each file-oriented sub-metadata is the value of an assay position in the BF with the 
length of m bits. The remote FoM are confronted with the potential spoofing attacks from the 
malicious server. As the server is unfeasible to guess all of k local sub-metadata, it can only 
forge a part of k remote sub-metadata randomly. Assume the server guesses ρones of k 
remote sub-metadata. The probability of each sub-metadata being forged is ρ/k. Only if 
 

                       )11( k fk −−<ρ ,                                (14) 
 
the forged remote metadata can escape from being detected. The value of ρis a very small 
value. The remote metadata forged by the server either escape from the corrupted data being 
detected or save too much computational resources. Thus, the forged remote metadata are 
infeasible while the verification is repeatedly executed. 

6.3 The metadata non-replay 
Similar to the previous reason, we only analyze the non-replay of FoM here. 

Theorem 3: Even if a server stores the remote FoM at last round, it cannot pass the same 
files’ verification utilizing the metadata relaying at the next round. 

Proof: The attack of metadata replaying is from the server who stores the recomputed 
remote FoM. However, all the local metadata aren’t utilized repeatedly at each different round. 
Certainly, the potential risk of the metadata replaying exists after all the local sub-metadata are 
run out after t rounds. However, the verification computation time and fee will restrict the user 
to unrestrainedly verify the accessed data in the server. Also, the ratio of data corruption is 
very low. Moreover, it is nonsignificant for the server to store these remote metadata while t 
meets the equations (10) and (12). Thus, the replaying attack of the remote FoM is infeasible. 

7. Simulation 
To further evaluate our algorithms, we test their performance with several metrics. In the 
experiment, each file or block is tested only once at each round. Let the amount of files be 
200,000. To shorten the time of the experiment, we let T be 2 years. Applying the equation (3),  
the size of the BF is 16 bits and the number of hash functions is 4 while f =0.001. Let 
α =0.35×10-4 and β =0. Assume it is dangerous to the security of data while the threshold p 
achieves to 0.0001. Let the length of each block be 8kB. Applying the equation (8), Pj(Fi) 
achieves to 0.05, 0.10,.and 0.19 while the file is 4MB, 8MB, and 16MB respectively. The 
owner and auditor implement these algorithms on a notebook computer equipped with the 
Intel Core Duo 1.6GHz CPU, 1.5 GB memory. The server executes the verification on a Dell 
PowerEdge R420 (Intel Xeon E5-2403 1.8GHz CPU, 8GB memory). HMAC-SHA1 is chosen 
as the hash function. All experiment results are tested 50 times and are taken their average. 
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7.1 Metadata computation time 
Each sub-metadata. The computation time of each sub-metadata is the duration of a file 
mapping into the BF with m bits. We arrange the length of each file to be 1MB, 4MB, and 
8MB respectively. The time is tested as shown in Table 4. It shows that a smaller file costs 
shorter time.  
 

Table 4. The computation time of each sub-metadata 
File length (bytes) Time (ms) 

1M 30 
4M 124 
8M 247 

 
Each metadata. The time of each metadata generation depends on the length of each data 

unit and the number of rounds. For the BLOCK, a data unit is a block. For the FILE, a data unit 
is an entire file. For the MIXED, a data unit includes an entire file and all blocks in the file. To 
decrease the experiment time, we let the size of each file be 4MB, which is divided into 512 
blocks. Applying the equations (7) and (11), t is 9 rounds. According to the equation (12), x 
should be set between 3 and 9. The time of each metadata generation for the BLOCK and FILE 
is respectively shown in the left of Table 5. As one FoM and one BoM can’t constitute a 
MIXED metadata, the MIXED isn’t listed. The time of the FoM is remarkably greater than the 
BoM since the BoM only computes one block instead of the entire file. 
 

Table 5. The time of each metadata generation 

Algorithms Time(ms) 
A data unit A entire file 

BLOCK 71 2,809 
FILE 1,046 1,046 

MIXED  3,855 
 

For the sake of fairness, we compare the computation time of different metadata generation 
for an entire file. Based on the conditions above, the amount of the FoM is 1. The amount of 
the BoM is 512. The amount of the MIXED metadata includes 1 FoM and 512 BoM. Each 
FoM at least includes three sub-metadata while x=3. The time of three metadata generation is 
shown in the right of Table 5. The time of the BoM is remarkably longer than FoM. Certainly, 
the MIXED costs the most time since it computes 1 FoM as well as 512 BoM. Obviously, with 
the increase of the number of files, the difference will become more and more great. However, 
all these metadata are only precomputed at the owner.  

7.2 Storage cost 
From the previous description, we know that the storage space of the MIXED metadata is 
(gxm+ g2log ) bits more than the BoM since it costs the additional storage space of the FoM at 
the owner. The server’s storage space is equivalent with regard to the storage of the MIXED 
metadata and the storage of  the BoM. 
   Let the length of each file be 4M bytes, and the number of files be 200,000. The amount of 
the FoM is 200,000, which occupies 4.5MB (x=3) to 6.8MB (x=9) applying the equations (2), 
(7), (8), (10) and (12). The amount of the BoM is 102,400,000, which occupies 1,562MB 
while the length of each BoM is 128 bits. For the MIXED, the amount of the metadata includes 
200,000 FoM of length 4.5∼6.8MB and 102,400,000 BoM of length 1,562MB. Therefore, the 
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storage space of the MIXED metadata is only approximately 0.43% more than the BoM. 

7.3 Transmission cost 
The transmission cost includes the overhead of the auditor sending the request of verification 
and the owner or the server sending the response. If there are no bad blocks in files, the cost is 
shown in Fig. 5(a). The curve of the MIXED coincides with that of the FILE, and they are both 
lower than the BLOCK. The reason is that the MIXED doesn’t execute the BLOCK while no 
bad block is identified by the FILE. Otherwise, the cost is shown in Fig. 5(b) while there exists 
a corrupted file every 59 files (only one corrupted block in each corrupted file). For the FILE, 
the costs are both equal in two figures. The MIXED is greater than the FILE, and but they are 
both far lower than the BLOCK since the MIXED only executes the BLOCK for a part of files 
each with a bad block after those corrupted files are identified by the FILE. 

                  
(a) No bad block                                      (b) One bad block 

Fig. 5. The transmission cost in the verification. 
 

7.4 Verification execution time 
The verification execution time includes the remote metadata recomputed and compared with 
the local metadata at one round. Similarly, let each file be 4MB. Table 7 shows the time of 
three algorithms with no bad block or one bad block. No bad block means all blocks in the file 
are intact. One bad block means there exits a corrupted block in the file. We corrupt a block in 
the file at random. The BLOCK costs further more time than the FILE and the MIXED while 
there exists no bad block, and but the MIXED costs more time than the BLOCK while there 
exists one bad block. The reason is that the MIXED (no bad block) only executes the FILE (the 
suspicious data verification). 
 

Table 7. The verification execution time of a entire file 

Algorithms Time(ms) 
No bad block One bad block 

BLOCK 873 873 
FILE 125 125 

MIXED 125 998 
 

7.5 Time of corrupted data being identified 
The time of corrupted data being identified is the duration of all corrupted blocks identified. 
Let the file be 4MB. Applying the equation (8), Pj(Fi)=0.05 while p=0.0001. The cumulative 
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probability of n′ files’ natural corruption is P(n′Fi)=1-(1- Pj(Fi))n′. While P(n′Fi) achieves 
to 0.95, n′ is approximately equal to 59, i.e., there is a corrupted file every 59 files by the 
probability of 0.95. We vary the number of files from 1 to 200,000. Hence, there are 3,390 files 
corrupted in 200,000 files by the probability of 0.95. The verification time of  the MIXED and 
the FILE are close and both approximately 1/3 times less than that of the BLOCK in Fig. 6. If 
the verification is parallelly executed on multiprocessors or multidevices, the efficiency of the 
MIXED is more obvious.  

 
Fig. 6. The verification execution time. 

 

7.6 Coverage of data verified 
The coverage of data verified is the ratio of the verified data to the total data. Referring to 
Amazon EC2 pricing, the charge is based on the utilization of each server’s computing unit 
within one hour. We select a machine as a computing unit with the time limited within one 
hour. The coverage is compared between the MIXED with no bad block and the BLOCK. 
While the MIXED executes the verification of 15,063 files (i.e., the size of 60,251MB), the 
BLOCK only covers 5,513 files (i.e., the size of 22,052MB). Thus, the MIXED provides all 
data with a greater opportunity to be checked at each round.  

In other ways, however , we restrict the verification cost at each round. The duration that the 
BLOCK verifies a file can support the MIXED to execute the same file 3 times. It also implies 
that the value of k is increased from 4 to 12 at each round. In this case, the probability ξis 
reduced from 2.0×10-6 to 3.3×10-16 applying the equation (3). The more the frequency of 
data verified is the lower the probability ξis. Certainly, the MIXED improves all data’s 
security by expending the coverage of data verified with less computation time. 

5. Conclusion 
In this paper, to identify the corrupted data in cloud data storage, we improve the file-oriented 
metadata generation and verification, and propose a mixed verification protocol to balance the 
trade-off between the verification cost and the efficiency. By the mixed verification, we can 
rapidly locate all corrupted data in the verified data. In the file-oriented verification, we design 
the structure of the file-oriented metadata based on the BF for each file and analyze the 
corresponding parameters in each metadata to resist the malicious attacks. In the mixed 
verification, we utilize the file-oriented verification to extend the coverage of checked data or 
decrease the verification charge by means of less cost of file-oriented metadata computation 
and transmission before the traditional block-oriented verification executes. The theoretic 
analysis and simulation results demonstrate that our protocol fastly identifies the corrupted 
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blocks at the low cost in massive small files. Even if the little storage space of file-oriented 
metadata is increased, it doesn’t burden the server or the auditor since it is only stored at the 
owner. In the future, we will further optimize the metadata generation and the algorithm’s 
performance. 
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