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Abstract

In this paper, we examine idempotent intuitionistic fuzzy matrices and idempotent intuitionistic
fuzzy matrices of T-type. We develop some properties on both idempotent intuitionistic fuzzy
matrices and idempotent intuitionistic fuzzy matrices of T-type. Several theorems are provided

and an numerical example is given to illustrate the theorems.
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1. Introduction

We are living in a real world where we have to handle situations involving uncertainty, impre-
cision and vagueness. Moreover the great deal of data involved in Economics, Engineering,
Medical science and other fields are not always clear and includes all kinds of uncertainty. But
in classical Mathematics all the Mathematical tools for modeling, reasoning and calculations
are certain or precise which deal with certain problems. So that they can not solve those
complex problems in real situations. In recent years researchers have become interested to
deal with the complexity of uncertain data. In 1965 Zadeh [1] came out with the concept
of fuzzy set which is indeed an extension of the classical notion of set. However, there are
some limitations in dealing with uncertainties by fuzzy sets. To overcome these difficulties,
Atanassov [2] developed theory of intuitionistic fuzzy sets as a generalization of fuzzy sets.
Jang et al. [3] studied interval-valued intuitionistic fuzzy sets. Park et al. [4]] discussed about
generalized intuitionistic fuzzy soft set theoretic approach to decision making problem.

A Fuzzy Matrix (FM) is a matrix with elements having values in closed interval [0,1].
Kim and Roush [5] introduced the concept of FM. FM play a vital role, in various areas in
Science and Engineering and solve the problems involving various types of uncertainties [6].
Kim [[7] studied inverse of idempotent FMs. Mishref and Emam [8]] discussed transitivity
and sub-inverse of FMs. Ragab and Emam [9] found determinant and adjoint of a square
fuzzy matrices. Kim [|10] studied idempotent FM of T-type and developed some properties.
Meenakshi [11]] studied minus ordering, space ordering and schur complement of FM and
block FM. Later much work has been done by many researchers on FM. FMs deal only with
membership value where as Intuitionistic Fuzzy Matrices (IFMs) deals with both membership
and non membership value. Pal [[12]] developed the intuitionistic fuzzy determinant. Im
et al. [[13]], studied the determinant of square intuitionistic fuzzy matrices. Pal et al. [[14]],
developed the intuitionistic fuzzy matrices and studied several properties of it using the idea
of IFSs and intuitionistic fuzzy determinant. Later, Shyamal and Pal [15] studied some more
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properties on fuzzy matrices. Shyamal and Pal [[16] found the
distance between IFMs. Bhowmik and Pal [[17H19] developed
some results on IFMs, circulant FM and generalized IFMs.
Khan and Pal [20] introduced the concept of generalized in-
verse for IFMs and studied several properties. Adak et al. [21]],
studied on generalized intuitionistic fuzzy nilpotent matrices
over distributive lattice. Several authors [22H27]] worked on
IFMs and obtained various interesting results, which are very
useful in handling uncertainty problems in our daily life. Here
we introduce idempotent IFMs of T-type and improve some
theorems.

The notion of IFM was given by Atanassov [28]]. Further,
the concept of IFM was developed by Pal et al. [|14] have some
special features which are not available in fuzzy matrix the-
ory. Normally fuzzy matrix theory deals only with relevant
information, but IFM deals with both relevant and irrelevant
information. This motivates us to develop the study on IFM the-
ory, in particular idempotent IFM in analogous to idempotent
FM.

2. Basic Definitions

Definition 2.1. /29| An Intuitionistic Fuzzy Set (IFS) A in
X, where X denotes a universal set is defined as an object of
the following form A = {{(z, pa(z),va(z))/xz € X}, where
the functions: pa : X — [0,1] and vy : X — [0, 1] define
the membership function and non-membership function of the
element x € X respectively and for every x € X : 0 <
pa(z) +va(z) < 1.

Definition 2.2. [/4)] Let X = {x1, 22, ..
alternatives andY = {y1, Y2, ...yn } be the attribute set of each
element of X. An IFM is defined by

A = ({(zi,y5), palzi,y;), valzs, y;))) for i = 1,2..m and
j=1,2,.n,where py : X XY = [0,1]andvs : X xY —
[0, 1] satisfy the condition 0 < pa(x;,y;) + va(zs,y;) < 1.
For simplicity we denote an IFM is a matrix of pairs A =

Zm} be a set of

({aij, a;j>) of non negative real numbers satisfying a;j + a;; <
1 for all i, j. We denote the set of all IFM of order n x n by
F.

Definition 2.3. [|/3|] The determinant of | A| of n X n intuition-
istic fuzzy matrix A is defined as follows:

< \/ A15(1) N oo A Qo (n), /\ a/10<1) V..V a'm,(n)):| ,

o€Sy oESy

Al =

where Sy, denotes the symmetric group of all permutations of
the indices {1,2,...,n}
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Definition 2.4. [|7)] Let E;; € .#,, denotes matrix obtained
from the identity matrix I = I,, by interchanging row i and row
Ji <)

Some of the definitions and results we apply in this paper are
give below.
Let A and B be an n x n I[FMs with elements from closed

interval [0,1] x [0,1] such that A = ({(aij,a;;)) and B =

((bsj, b;;)) respectively.
AV B = ({aij, aj;)) vV ((bij, bi;)) = ({aij Vbij, az; Ab;)),
ANB = ({aij, aj;)) A ((big, b)) = ({aig Abig, aj; Ab;)),
Ax B = [({ai1 Abij,aj; Vb))V ({@i2 Abaj, ajp Vb)) V

-V ({@in A bnj, aiy, Vb))
AR = A 5 A, (k=0,1.2,..),
A® =1 =[5, 6;;]> (where [0;5, 6;;] is Kroneker delta),
AT = [g;,q};] (Transpose of A)

A < Biff ({aij, aj;) < (bij, b};) foralli,j € {1,2,...,n}).
The IFM A is said to be,
(a) Symmetric if A = AT
(b) Idempotent if A2 = A
(c) (Max-min) transitive if A2 < A
(d) Nilpotent if A™ = ((0,1))

3. Results

Definition 3.1. Let A = ({a;j,a;;)) € F. A is said to be
> (ann, Uy )-

normal if {a11, a}q) > (age, abhy) > ... I

Theorem 3.2. Let A =
A is normal, then

(1) {aij,ai;) < {(ai1,ayy) foralli,j € {1,2,...,n}

(2) Let min{(as;,aj;) : i,j € {1,2,...,n}} = (¢,¢

If {¢,c')y = {aij,a ZJ>( # j), then there exists (a,al,) or

(Anj, ap;) suchthat (c,c') = (ain, ajy,) or (¢, ) = (anj, ay;)-

({aij, ai;)) be an idempotent IFM. If

Proof. (1) In order to prove (a;j, a;;) < (a11,a’;) we have to

first show that (a1, a},,) < (a11,a};).

Suppose that (a1, a},) > (a11,a};) (we shall obtain contra-
(r,r").

The proof consists of following steps.

(a) A is idempotent = AA = A, we have that

> (a1e, ) (a1, af,) and

(@10, @ ) ) = {a1ms @) for 1 < k < n.

If k=1, then (a1, a}1){a1n,a},) = (ain,dl,,) < {a11,a};),

diction. Put (a1, a},,) =

<a1na a/1n> =

contrary to (ain,ay,) > (a11,al;).
Similarly we can prove that k # n.
If {ank, afi) > (r,7") = (ank, @) (@kn, agy,
trary to (ank, @l ) (Akn, @1, < (Gnns Gy

Y > (r,7"), con-
S <a’11)a’/11> <
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(r,r') we get,
(a1n,al,) =
(g, ah ) < (r,r').

(b) Suppose that (a1, a},,) is the first such element from
<a1k7 a/1k> <akn’ a;cn>
(and there is no ¢ such that 1 < ¢ < k and (a1,,a},) =
(a1t aty){an, ai))-

Note that (a1, a),) > (r, 7).

Since AA = A, for (a1, a),,) there exists (a1, a},,) such that
(a1k, aly) =
We suppose that (a1, a},,) is the first one from (a1, a’;,) with

(a1k, @i ) {Qkn, al,), 1 < k < nand

(a11, @}, ) with the property (a1, a},,) =

(a1, aly,)(auk, al,) and k < u < n.

this property.

If u = k, then (akk, al,,) > (r, 7’
<akkaa;ck> < <a113a/11> < <a1n7a/1n> = <T5 7J>'

Thus, we have k < w. If u = n, = (ank, al;)(a1k, a}y) >
(r,r').

But we know from (ai1,,a},) = (aik,a}s){akn, al,) that
(b G} > (1,7,

Then we obtain that (ank, a,,)(kn, ay,) > (r,r’), contra-
dicts with (ann,a,,) < {(ai1,a};) < (r,r’). We say that
(a1k, a}1) = (A1u, 0]y ) (Quk, @) With kB < u < n.

(c) Using the above argument for (a1, a},,),

<a1vaallv><a’vu7 1)u> with1 < k <

}, which contradicts

we get that <a1ua a/1u> =

u<v<n.
(If v = u, then
(@1us @1yy) = (@1, A7) Qs Q) < Qs @) <

(a11,dly) < {r,r’), contrary to

(r,r') = (a1n, ay,) = (a1, a1} (Akn, Ay, )
(a1u, a1y ) (@uk, Gy ) (Qhn Ay,) and (a1y, @,
(If v = n, then

( )= <a1k7a'/1kj><ak”7a’;cn> =
(10, A1) (Quk, Q) (@kn, @) =
(a1n, @y, )(

(

) = (r,r').

a1n7 a’ln

anu, @ nu><au}€’ uk><akn’akn> and
A Gy ) (Qukes ALy ) (Qlorn, @Y, ) > (1, 77), contrary to
<anu7@;m><auk7 uk><aknaakn> <ann; nn> < < r,r > Thus,
v =n).
(d) We put k k(1), v = k(2) and v = k(3). We get,

1<k(l)<k(2)<kB)<n
(a1r(1), alk(1)> =
(@1k(2), @g(2) ) (@R(1)E) T1)r(2) ) (Q1k(2)> Da))
= (a1k(3); alk(3)><ak(3)k(2)» ak(S)k(2)>’
(a1n, a1,) = (@1k(1), @) N aR@)ns T1))» a0d
K= {<a1k(t),a’1k(t)> = 1,2,3}.
We note that (ay(), a’lk(t)> > (r,r") for (a1@), a’lk(t)> ek
(e) If we carry on the argument (a), (b) and (c) then the number
of the elements (a1, a’lk(t)) of the set K increases indefi-

183 | Riyaz Ahmad Padder and P. Murugadas

nitely, but the cardinal number of {(a1;,a};),i =1,2,...,n} is
equal to n.
This proves that (a1, a},,) < {(a11,a);).

(f) At this stage, we just show how to continue with the argu-
ment in (a), (b) and (c).

‘We shall show that
<fl1(n 1)7a1(n 1)> (a11,a1;), <a’1(n*2)’a’/1(n72)> <
(a11,a11); -, (@13, a43) < (a11,aq;) and

(a12,a1,) < (a1, aly).

Then we take AT and using the above statement, we have
(a1, a}1) < {ay1,a)q) fort=n—1,n—2,..,2.

Then we take the second row of A and prove that

<a2n7 a/2n> S <a117a111>'

Then we show that

<a2(n—1)7 alg(n_l)> < <(L11, a/11>1 sy <a2(n—1)a a/Q(n_l)> <
(a11, a},), and so on. This proves (i).

(2) Let (¢, ') = (aij, aj;) withi # n and i # n.

Then we see that

n
(e,c) = <aijvagj> = tg (it ajy)(ati, ay;) =
(aij, ai;){aij, aij)+(aij, ai;){ais, ai;)+...+{ai;, aj;){aiz, a;;)
and (aij, aj;){aq;, aj;) < {(c, ).
We also see that
<aij’a;j> 2 <C7 C/> <a’2]7 1j> > <
(aij, aj;){aij, aj;) = (c, ).
Thus, we get
<aljaa;J><a’1]7a;j> = <C7C
<aijﬂ a’;j> = <C, C/> or <aij,a;j> =

'), and

"}, which deduces that
{c, ). O

Definition 3.3. (a) Let A € F,.
of A.

(b) [30] adj(A) = B = ({(bij, bi;)), denote the adjoint matrix
of A, defined as follows: (bi;,b};) = |Aji| where Aj; is the

|A| denote the determinant

(n—1) x (n — 1) IFM formed by deleting row j and column i
from A.
(c) Let A = ({aij,a;;)) be an idempotent IFM, and assume

that A is normal. A is said to be T-type if {a;, aly) < {a;;,al;)
and (ay;, ay;) < {ay,al;) fort >

Theorem 3.4. Let A =
fuzzy idempotent matrix of T-type, and assume that A is normal.
Then adj(A) is an idempotent IFM.

((aij, ai;)) € Fy be an intuitionistic

Proof. The proof consists of following steps

(a) By computations, it is not difficult to find that adj(A) =
B = ((bi;, b};)) takes the form

<bnm b;m> <an71a a2171>

<btt7 b;t> = <a’n7l’ a’;zn> if ¢ 7& n,
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(b (n—1n, @y 1) (@n—2n—2,00 o, _2),
( (-1, 1) (@n—2n—2, 0% 9, _2),
{ (@in,s @G ) (@n—1n—1,0p, 1, 1) +
(@in—1,0}y_1){An-1n,a)_1,), ifi<n—2

(bnis m> (aniy apg)(an—1,a,_1) +
(

(b

(

(b

n— 1"’ n 1n>

brn— 17 nn— 1>

bm? zn>

Ann—1; Qpp— 1><(Ln 1i’a;z—1i>’ if 7 S n—2
<a’lj7 az]><a‘nn7 a;l'n,> +
Qin, 1n><a’nj’an]><an—ln—17a{n,1n71>,

)Letm = t§<bnt7 r) (b, 04,y = m(1) +m(2) + ... +7(n),

where 7(k) = (byg, b)) (bkn, b)) for k € {1,2,...,n}.
We have to prove that 7 = (b, b))
m(n) = (bnn, by ) (brn, b)) =
(@n—1n—1,0,_15-1)(An—1n-1,a7_1p,_1)

= (an-1n-1,p_1p-1) = (bnn, by)
7T(1> = <bn17 n1><b1n7 > =
({@n1, an1)(@n—1n-1,a5_1,_1) + (@nn—1,app_1)
(an-11,a5,_11)) (@10, 1) (An—1n—1, 05 1, 1) +
(@1n—1, 01,1 )(an—1n, a5 _1,))
= m(n) = (@n—1n—1,0p_1n-1)
(@n—1n: @y 1) (@nn—1, 5 1) <
(An-1n—1,0p_1,_1) = T(N),

i) zy)
ifi<n-—2

= 7(k) < w(n)foreach k € {1,2,...,n}.
Therefore, we get 7 = 7(n) and E( it Ui ) (ny ) =
<b7ln7b;7,n>'

(¢) Letm = Z (brt, biy) (ber, by) = (1) +7(2) + ...+ 7(n),
=1

forl1 <k < n—2,

{bkis bi) (bik, i)

We have to prove that m = (by, bl..)-

where 7 (i) =
In order to prove this we take m(k) = (bgk, b}.1.) (bkk, Dyre)-

We have <bkka b;ck> <bkk? b;ck> - <ann7 a’;m> <ann7 a/nn> -

(Ann, @) = (b, bly) for 1 <k <n —2.

We also can see that 7(¢) < {(ann,al,,) for each i # k, there-
fore m = (bik, bj,p)-

It is easy to show that if £ = n — 1, then

> (bwt, by) (e, byy) = (br, b)y,) and

t=1
<bn71t7 b;,flt> <btn*17 b2n71> =

(Anns Gp) =

M=

= <bn71n717b;z—1n—1>

(d) Letm = Z (bit, biy) (b, byy) = w(1) + m(2) + ... +7(n),
t=1

fori, 7 <n-—1,

where 7(k) = (bik, bjy)(brj, by;), we shall show that 7 =

(bij, bi)-

1]7 (%)

Let ¢ < j. We first suppose thati, j < n — 2.

‘We can see that
7T(TL) = <b7fﬂ7 b;n> <bn]’ b;zj> =

www.ijfis.org

((ain, m><an In—1,0p_1n_1) +

(Qin—1, @z, 1><an lnaa;z—ln»((anjva;zﬂ

(An—1n—1,a5_ 15— 1>—|—<a7m,1,a/nn71)<an,1j,a;_1j>):
(@in, a m><anj>ang><an In—1sGn_1n—1)

m(i) = <b“7bfn><b217b;j> (Anns Q) ((@igs ;j><annaaim>+
(An—1n—1, a5 _15—1){@in, @}y ) (Anj, an]>) =
<aij7a;j><anmalnn> + (@nn, a5y ) (@in, @y, ) (Ang, a nj> and
(i) +m(n) =

(@nn; @) (@ij, ag) + (Gn—1n—1, afp) (@i, @5 ) (anj, az5) =
(bi, bij)-

We can prove that

m(k) < <annvann><au’az]> +
(An—1n—1, a5 _15—1)(@in, @}, )(anj, ap ;) = (bij, bj;) for each
ke{l,2,..,n}.

Therefore, we have proved that Xn: (Dit, by ) (b, by;) = (big, b)
fori,j <n—2. =

Similarly, we can prove that i (bit, biy) (bej, by;) = (i, b;)
forj <n-—1 =

(€) Letm =3 (102 by 1) (brms bl) = (1) +7(2) + . +
(), =1

where 7(k) = (bp—11, b, _11) (Okn, U),0)-
Then we shall show that 7 = (b, 1, b, _1,,)-

We take 7(n) = (bn—1n, bl _1,,) (Dnn, by, )» and we can see that
m(n) = ((@n—1n—1,p_1p—1)(n—1ns @5 15,)) rn, b)) =
<bn—1n, b/n—1n>'

= m(n—1) = (bp-1n— 17b;1 1) {On—1n, b, _1,,) =

(@nn; Qg ) (@n—1n-1, @ _1n_1)(@n—1n, 1) < 7(R),

7(1) = (bn—11,b;,_11)(b1n, V1) =

((@nns @pp){@n—11,a5_11) + (@n—1n-1, a5 _1n_1)

(@n—1ns ap_1n)(@n1, an1)) ((@nns @) (@1n, aty,) +
(@n—1n-1, 8 _17—1)(A1n, A1) (@nn, Ay )) = m(n — 1), and
w(i) <m(n)forl <i<n-—1.

Thus, we have proved that 7 = (by,_1,,b),_1,,)-

Similarly, we can show that 7 = (by,—1,],,,_1)-

(f) Let 7 = z"j Bty V) (bems V) = (1) 47(2) o 7(),
fork <n —tl where ™ = (biy, b)) (bin, bl,)-

= m(n) = (Okn, b ) (brns b)) =

(Okn: Oy ) (@n—1n—1, a1 _1n—1) =

((an—1n—1,0a5,_1,_1)(Akn, a;m> +

<akn717a§m 1><an in, @ ;z—ln>)<anflnflva%—1n—1> =

(bkn, b,,,), and (i) < w(n) foreach i € {1,2,...,n}.

Hence we have shown that 7 = (bg,,, b},,,)-

Similarly, we can prove that 7 = (b, b),,.) for k < n — 2.
This shows that adj(A) is idempotent. O
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Definition 3.5. (a) We define P \ QQ =
where P and Q be two IFSs
(b) The cardinality of IFS P is denoted by | P|
() A = ({aij,aj;)) € My(F) be an idempotent IFM. Let
D(A) = {{aw,ay) -t € {1,2,...,n}}.
We suppose that |D(A)| = n and {(a,a},) # {ass, aks) for
t # s.
We define max D(A) = m(1) = (a;,, a;,),
max D(A) \ {m(1)} = m(2) = (ai,, a;,),

DAY {m(1), m(2)} = m(3) = (aiy.al,) and s0 on.
We have D(A) = {m(t) : t € {1,2,...,n}}. A is said to be an
idempotent IFM of T-type if the followmg condition hold:
(i) {ai ¢, a;,;) < m(1) and {(ag;,,ay; ) < m(1) forall t €

{reP:z¢Q}.

{1,2,...,n}
(it) @iyt ajyy) < m(2) and (agi,,al;,) < m(2) for all t €
{1,2,....,n}\ {i1}

(ii) (@i, aj, ;) < m(k) and (ag,,ay;, ) < m(k) forall t €
{1,2,...,n} \ {i1, 42, ...sir—1}, k= 3,4,..n

(d) Assume max D(A) = {{ass, aly), {aw,a})} -

Then we write m(1); = (ass, a%g) and m(1)s = {(as, ay,) (s #
t).

Assume max D(A) \ {m(1)1,m(1)2} =
{{aii, aly), (ajz, af;), (ank, agy) }-

Then we write m(2)1 = {(a;, al;), m(2)a =
and m(2)s = (i, ajy,)-

Similarly, we write

m(3)1 = (Guu; ay,) and m(3)2 = (avy, ay,, ),

when max D(A) \ {m(1)1, m(1)2, m(2)1,m(2)2, m(2)s} =
H{ayu, aly,),s (avy, @, )} and so on.

We suppose that max d(A) # min D(A).

(ajj,al;)

We define idempotent IFM A of T-type as follows:
A is said to be T-type if all of the following conditions hold:
(1) (asq, al,) < m(1); and {ays, al,) < m(1); forx # ¢,
(i1) (atas al) < m(1)2 and (e, aly) < m(L)s fora # s,
(731) (aiz,ai,y < m(2)1 and (az,al;) < m(2); for z €
{1,2,...,n}\ {s,t,4,k},
(iv) (ajz,al,) < m(2)2 and (ag;,al;) < m(2) for z €
{1,2,..,n}\ {s,t,4,k},
(v) (aresaly) < m(2)g and (agp,aly) <
{1,2,....,n}\ {s,t,4,5},
(Vi) {Qua, ay,) < m(3)1 and (agu, ay,)
{1,2,..,n}\ {s,t,4, 4, k, v},
(vii) {aps, al,) < m(3)2 and {(azy,al,) < m(3)s for z €
{1,2,...,

m(2)s for z €

< m(3); forx €

n} \ {&t,i,j,k,u} , and so on.

Lemma 3.6. Let A € %, and n > 3. Then we have that
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Definition 2.4.

E,;(adj(A))E;;, where E;; is defined as in

Corollary 3.7. Let A =
T-type.

We assume that max D(A) # min D(A). Then adj(A) is idempo-
tent IFM.

(aij) € F,, be an idempotent IFM of

The following example illustrate that the Theorem 3.4 fails
if the idempotent IFM is not of T-type.

(0.9,0.1) (0.0,1.0)
(0.8,0.2) (0.4,0.5)
(0.1,0.7)  (0.0,1.0)
(0.0,1.0) (0.6,0.3)
(0.8,0.2) (0.4,0.5) (0.6,0.3)

(0.1,0.7y (0.0,1.0) (0.2,0.6)
Therefore A is an idempotent IFM but not of T-type

(0.6,0.3)
(0.6,0.3)
(0.2,0.6)

Example 3.8. A =

(0.9,0.1)
A? =

Let adj(A) = B we get
(0.2,0.6) (0.0,1.0) (0.4,0.5)
adj(A) = B = [(0.2,0.6) (0.2,0.6) (0.6,0.3)
(0.1,0.7y (0.0,1.0) (0.4,0.5)
(0.2,0.6) (0.0,1.0) (0.4,0.5)
B2 = [{0.2,0.6) (0.2,0.6) 0405}
(0.1,0.7)  (0.0,1.0) (0.4,0.5
= B?>#B

Therefore B is not an idempotent IFM.
The following example shows that if A is an idempotent IFM of
the T-type and A is normal then the Theorem 3.4 holds.

(0.8,0.2) (0.6,0.3) (0.4,0.5)
Example 3.9. A= |(0.2,0.7) (0.4,0.5) (0.3,0.6)
(0.1,0.8) (0.1,0.8) (0.1,0.8)
(0.8,0.2) (0.6,0.3) (0.4,0.5)
A% =1(0.2,0.7) (0.4,0.5) (0.3,0.6)
(0.1,0.8) (0.1,0.8) (0.1,0.8)
=A2=4A

Therefore A is an idempotent IFM of T-type and also A is nor-

mal.

Now,

adj(A) = B

(0.1,0.8)

(0.1,0.8)

(0.1,0.8)
(0.1,0.8)
(0.1,0.8)
(0.1,0.8)

(0.1,0.8)
(0.1,0.8)
(0.1,0.8)

(0.4,0.5)
(
(
0405}

0.3,0.6)
0.4,0.5)

adj(A) =B =
(0.1,0.8)
(0.1,0.8)
(0.1,0.8)
= B?>=RH

Therefore B is an idempotent IFM.

B? = 0.3,0.6

0.4,0.5
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4. Conclusion

In this paper we have defined normal IFM and idempotent IFMs
of T-type. Further, we have developed a result on idempotent
IFM and IFMs of T-type.
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