Abstract
With the exploration of digital academic information, it is certainly required to develop more effective academic contents recommender system in order to accommodate increasing needs for accessing more personalized academic contents. Considering historical usage data, the academic content recommender system recommends personalized academic contents which corresponds with each user's preference. So, the academic content recommender system effectively increases not only the accessibility but also usability of digital academic contents. In this paper, we propose the new journal recommendation technique based on information of journal subscription and web usage logs in order to properly recommend more personalized academic contents. Our proposed recommendation method predicts user's preference with the institution similarity, the journal similarity and journal importance based on citation relationship data of references and finally compose institute-oriented recommendations. Also, we develop a recommender system prototype. Our developed recommender system efficiently collects usage logs from distributed web sites and processes collected data which are proper to be used in proposed recommender technique. We conduct compare performance analysis between existing recommender techniques. Through the performance analysis, we know that our proposed technique is superior to existing recommender methods.
전자 학술 정보 유통의 확대에 따라 날로 증가되는 학술 콘텐츠 서비스 수요에 부응하기 위하여 보다 효과적인 학술 콘텐츠 추천 시스템 개발이 요구된다. 학술 콘텐츠 추천 시스템은 정보 소비자의 과거 이용 내역을 기반으로 각 소비자 선호(preference)에 맞는 학술 콘텐츠를 제공함으로써 콘텐츠 이용성을 보다 효과적으로 향상 시킬 수 있다. 본 논문에서는 특정 기관에 소속된 사용자의 선호에 더욱 부합하는 학술 콘텐츠를 제공하기 위하여 기관의 전자 저널 구독 정보 및 웹 이용 로그를 활용한 저널 추천 기법을 제안한다. 제안하는 추천 기법에서는 기관 사용자의 저널 선호도를 효과적으로 예측하기 위하여 기관 유사도(Institution similarity), 그리고 참고문헌의 인용 관계 데이터를 기반으로 저널 유사도(Journal similarity) 및 저널 중요도(Journal importance)를 산출하여 최종적으로 기관 맞춤형 저널 추천 항목을 구성하게 된다. 또한, 제안하는 추천기법이 적용된 기관 맞춤형 저널 추천 시스템 프로토타입을 개발한다. 개발된 저널 추천 시스템은 각 기관의 저널 선호도 예측을 위하여 활용되는 웹 이용로그를 효과적으로 수집하고 이를 추천 기법에 활용하기 용이한 데이터로 가공 처리 하여 별도의 데이터베이스에 저장하여 추천 기법의 저널 선호도 예측을 위한 기반 데이터로 활용한다. 마지막으로 우리는 기존 추천 기법들과의 비교 성능 평가를 통해 제안 기법의 차별성과 우수성을 보인다.