DOI QR코드

DOI QR Code

ALD YSZ 연료극 중간층 박막 적용을 통한 고체 산화물 연료전지의 성능 향상

Performance Enhancement of SOFC by ALD YSZ Thin Film Anode Interlayer

  • 안지환 (서울과학기술대학교 스마트생산융합시스템공학과) ;
  • 김형준 (서울과학기술대학교 스마트생산융합시스템공학과) ;
  • 유진근 (서울과학기술대학교 스마트생산융합시스템공학과) ;
  • 오성국 (서울과학기술대학교 스마트생산융합시스템공학과)
  • An, Jihwan (Department of Manufacturing Systems and Design Engineering, Seoul National University of Science and Technology) ;
  • Kim, Hyong June (Department of Manufacturing Systems and Design Engineering, Seoul National University of Science and Technology) ;
  • Yu, Jin Geun (Department of Manufacturing Systems and Design Engineering, Seoul National University of Science and Technology) ;
  • Oh, Seongkook (Department of Manufacturing Systems and Design Engineering, Seoul National University of Science and Technology)
  • 투고 : 2016.09.07
  • 심사 : 2016.09.22
  • 발행 : 2016.09.30

초록

본 논문은 원자층 증착법을 이용해 증착된 YSZ 박막을 산화 세륨계 전해질 기반 고체 산화물 연료전지의 연료극 중간층으로 적용한 결과를 보여준다. $500^{\circ}C$ 이상의 고온에서는 산화 세륨계 전해질의 전기전도도가 상승하여 이를 전해질로 사용한 고체 산화물 연료전지의 개회로 전압이 하강하고 성능이 저하된다. 원자층 증착법을 이용해 연료극 측 전해질 표면에 증착된 YSZ 박막은 얇은 두께(60 nm)에도 불구하고 산화 세륨계 전해질 표면을 완벽하게 도포함으로써, 전해질을 관통하는 전자의 흐름을 막아 개회로 전압을 최대 20%까지 상승시켰다. 이를 통해 $500^{\circ}C$에서의 최대 전력 밀도는 52%가 상승하였다.

This paper demonstrates the successful application of yttria-stabilized zirconia thin films deposited by atomic layer deposition to the anode-side interlayer for cerium oxide electrolyte based solid oxide fuel cell. At the operating temperature over $500^{\circ}C$, the electrical conductivity of cerium oxide electrolyte is known to dramatically increase and, therefore, the open circuit voltage of the cell decreases leading to the decrease of the performance. Ultra-thin (60 nm) atomic layer deposited yttria-stabilized zirconia thin film in this study conformally coated the anode-side surface of the cerium oxide electrolyte and efficiently blocked the electrical conduction through the electrolyte. Accordingly, the open circuit voltage increased by up to 20%, and the maximum power density increased by 52% at $500^{\circ}C$

키워드

참고문헌

  1. Y. Jee, G. Y. Cho, J. An, H.-R. Kim, J.-W. Son, J.-H. Lee, F. B. Prinz, M. H. Lee and S. W. Cha, "High performance Bilayered electrolytes via atomic layer deposition for solid oxide fuel cells", J. Power Sources, 253, 114 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.001
  2. W. H. Tanveer, S. Ji, W. Yu and S. W. Cha, "Characterization of Atomic Layer Deposited and Sputtered Yttria-Stabilized- Zirconia Thin Films for Low-Temperature Solid Oxide Fuel Cells," Int. J. Precis. Eng. Manuf., 16(10), 2229 (2015). https://doi.org/10.1007/s12541-015-0287-7
  3. J. An, Y. B. Kim, H. J. Jung, J. S. Park, S. W. Cha, T. M. Gur and F. B. Prinz, "Structural and Compositional Analysis of Solid Oxide Fuel Cell Electrolytes Using Transmission Electron Microscopy," Int. J. Precis. Eng. Manuf., 13(7), 1273 (2012). https://doi.org/10.1007/s12541-012-0170-8
  4. W. Y. Lee and F. B. Prinz, "Localized charge transfer reactions near the Pt-YSZ interfaces using Kelvin probe microscopy," Int. J. Precis. Eng. Manuf.-Green Tech., 1(3), 201 (2016).
  5. W. H. Park, J. W. Shin, B. C. Yang, M. J. Park, D. Y. Jang and J. An, "Study on the Properties of $TiO_2$ Film Deposited by ALD at Low Temperature", J. Microelectron. Packag. Soc., 23(2), 43 (2016). https://doi.org/10.6117/KMEPS.2016.23.2.043
  6. H. Lee, M. Jeong, B. H. Bae, T. Cheon, S. H. Kim and Y. B. Park, "Effects of Post-annealing and Temperature/Humidity Conditions on the Interfacial Adhesion Energies of ALD RuAlO Diffusion Barrier Layer for Cu Interconnects", J. Microelectron. Packag. Soc., 23(2), 49 (2016). https://doi.org/10.6117/kmeps.2016.23.2.049
  7. D. S. D. Gunn, N. L. Allan and J. A. Purton, "Adaptive kinetic Monte Carlo simulation of solid oxide fuel cell components", J. Mater. Chem. A, 2, 13407 (2014). https://doi.org/10.1039/C4TA01504E