DOI QR코드

DOI QR Code

A Comparative Study on Aerodynamic Validation in Design Process of an Airfoil for Megawatt-Class Wind Turbine

메가와트 급 풍력터빈용 에어포일의 설계 단계에서의 공력성능 검증 기법 비교

  • Received : 2016.08.07
  • Accepted : 2016.10.31
  • Published : 2016.11.01

Abstract

A comparative study between a wind tunnel test and an XFOIL simulation looking at the aerodynamic performance of the airfoil for MW-class wind turbine was conducted for validation in the design stage. Tests are carried out for 21% and 30% thickness-ratio airfoils developed for 5 ~ 10 MW offshore wind turbine and the results are compared with the output from the XFOIL simulation at Reynolds number $1.0{\times}10^7$. The test is performed at a free-stream velocity of 50 m/s, corresponding to a Reynolds number of $2.2{\times}10^6$ based on the chord. Surface roughness is simulated using a zig-zag tape. Discrepancies between the results of the test and the XFOIL analysis are found, however, meaningful data for surface pressure distribution, basic performance and surface roughness effect are obtained from the tests, while useful lift-to-drag ratio data is found by the XFOIL simulation.

본 연구에서는 MW 용량의 풍력터빈 블레이드용 에어포일의 설계 단계에서 성능 검증기법에 대한 비교 연구를 수행하였다. 이를 위해 5~10 MW 해상풍력터빈용으로 설계된 21%와 30% 두께비의 에어포일을 사용하여 풍동시험을 수행하였으며, 레이놀즈 수 $1.0{\times}10^7$ 조건에서의 XFOIL의 해석결과와 상호 비교하였다. 풍동시험은 자유흐름 속도 50 m/s, 시위 기준 레이놀즈 수는 $2.2{\times}10^6$에서 수행되었으며, 표면거칠기 효과는 지그재그 테이프를 사용하여 모사하였다. 비교 결과 풍동시험과 XFOIL 해석에는 차이를 보이지만, 풍동시험을 통해 받음각 변화에 따른 에어포일 표면에서의 압력분포 변화와 기본적인 공력 성능 및 표면거칠기 효과를 확인 할 수 있었다. XFOIL은 설계조건에서 기본적인 양항비와 표면거칠기 효과에 의한 양항비 변화 등을 확인 할 수 있었다.

Keywords

References

  1. Ryu, K.-W. and Kang, S.-H., "Airfoil Design and Aerodynamic Characteristics for MW-Class Wind Turbine Blade," Yanbian University of Science & Technology International Symposium, June 2012.
  2. Kim, J., Kang, S.-H., and Ryu, K.-W, "Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (II): with and without Vertical Wind Shear Effect," J. of The Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 5, 2016, pp. 399-406. https://doi.org/10.5139/JKSAS.2016.44.5.399
  3. Ceyhan, O., "Towards 20MW Wind Turbine: High Reynolds Number Effects on Rotor Design," AIAA 2012-1157, 2012.
  4. Drela, M., "XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils," Conference on Low Reynolds Number Airfoil Aerodynamics, University of Notre Dame, June 1989.
  5. R.P.J.O.M van Rooij, "Modification of the Bboundary Layer Calculation in RFOIL for Improved Airfoil Stall Prediction," Delft University of Tehcnology, Report IW-96087R, 1996.
  6. Eppler Airfoil Design and Analysis Code, http://www.airfoils.com/eppler.htm
  7. Barlow, J. B., Rae, W. H., Pope, A., Low-Speed Wind Tunnel Testing, Wiely-Interscience, 3rd Edition, 1999.
  8. Timmer, W.A., and van Rooij R.P.J.O.M., "Summary of the Delft University Wind Turbine Dedicated Airfoils," AIAA-2003-0352., 2003.
  9. Llorente1, E., Gorostidi1, A., Jacobs, M., Timmer, W. A., Munduate, X, and Pires, O., "Wind Tunnel Tests of Wind Turbine Airfoils at High Reynolds Numbers," J. of Physics, Conference Series 524, 2014.
  10. KAFA Subsonic Wind Tunnel, http://www.afa.ac.kr/index_frame_kk.html.
  11. Chan, Y. Y. et al., "Boundary Layer Simulation and Control in Wind Tunnels," AGARD-AR-204, 1988.
  12. Timmer, W. A. and Schaffarczyk, "The Effect of Roughness at High Reynolds Numbers on the Performance of Aerofoil DU 97-W-300Mod," Wind Energy, Vol. 7, 2004.
  13. Schlichting, H., Boundary Layer Theory, McGraw Hill Book Company, 1979.
  14. Kang, S.-H., Shin, E. S., Ryu, K.-W., and Lee, J.-S, "Separation Blockage-Correction Method for the Airfoil of a Wind Turbine Blade," JMST, Vol. 27, No. 5, 2013, pp. 1321-1327.
  15. Timmer, W. A. and Rooij, R. P. J. O. M.; Some Aspects of High Angle-of-Attack Flow on Airfoil for Wind Turbine Application; Helm, P & Zervos, A (Ed.). In the Proceedings of the European wind energy conference" Wind Energy for the New Millennium", Copenhagen, Denmark, 2-6 July (2001).
  16. Yamauchi, G.K. and Johnson, W., "Trends of Reynolds Number Effects on Two-Dimensional Airfoil Characteristics for Helicopter Rotor Analyses," NASA-TM-84363, 1983.
  17. Kim, J., Kang, S.-H., and Ryu, K.-W, "Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (I): with and without Turbulent Inflow," J. of The Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 5, 2016, pp. 391-398. https://doi.org/10.5139/JKSAS.2016.44.5.391
  18. AeroFoil, http://www.aerofoilengineering.com/Validation.php.