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Abstract : The tracking filter plays a key role in the accurate estimation and prediction of maneuvering a vessel’s position and velocity
when attempting to enhance safety by avoiding collision. Therefore, in order to achieve accurate estimation and prediction, many ocean-
going vessels are equipped with the Automatic Radar Plotting Aid (ARPA) system. However, the accuracy of prediction depends on the
tracking filter’s ability to reduce noise and maintain a stable transient response. The purpose of this paper is to derive the optimal values

of the gain parameters used in tracking a High Dynamic Warship. The algorithm employs a  filter to provide accurate estimates
and updates of the state variables, that is, positions, velocity and acceleration of the high dynamic warship based on previously observed

values. In this study, the filtering coefficients  ,  and  are determined from set values of the damping parameter,  . Optimization
of the damping parameter,  , is achieved experimentally by plotting the residual error against different values of the damping parameter
to determine the least value of the damping parameter that results in the optimum smoothing coefficients leading to a reduction in the
noise corruption effect. Further investigation of the performance of the filter indicates that optimal smoothing coefficients depend on the
initial and average velocity of the target.
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1. Introduction

The tracking system has a wide application particularly

in the field of navigation where it is useful in manned

maneuverable vehicles such as ships, submarines and

aircrafts which require accurate tracking. There are various

filters employed in these tracking systems. However, in this

study focus is on the  filter and its optimization in

order to improve the prediction of the state variables of the

high dynamic target warship.

The theory of the  filter has progressed

gradually over the years and as its range of applications

increase, more and more researchers have expressed quite

an interest in the improvement of the design to increase its

feasibility and efficiency. Sklasnky(1957) proposed the

criteria for determining the performance of a tracking filter

as evaluating the stability, noise and computing the

maneuvering error. Benedict and Bordner(1962) in their

early work established an optimal relationship of the 

filter’s gain parameters and consequently the filter was

known as Benedict- Bordner filter. Later, Simpson et al,

(1967) further extended this study by including the

acceleration term  to the  filter. Kalata(1984)

suggested the tracking index for the  filter which

defines the optimal set of the smoothing parameters in a

closed form. Tenne et al(2002) focused on characterizing the

performance of the  filter by analyzing the optimal

range of the gain parameters. And most recently, ZHENYU

et al(2009) uses an improved genetic algorithm (GA) to

optimize the initial  ,  and  parameters for application to

a non- linear target trajectory. Njonjo et al(2016) employed

the  filter to track a high dynamic warship and it

was proven that the filter was capable of following a highly

maneuvering target under a high initial speed with a good

degree of accuracy. However, these studies do not

specifically define a fixed set of the optimal  ,  and 

parameters.

This study proposes the optimization procedure of the

 filter which involves experimentally plotting the

residual error against a set of the damping parameter, .
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The optimal set of the filtering coefficients is found to

depend on the speed of the target in consideration.

Simulation results on examination indicate the optimal

coefficients corresponding to a particular initial and average

velocity.

2. The  tracking filter

The  filter is a constant acceleration one step-

ahead position and velocity predictor that uses the current

residual error to predict. The target is assumed to be

influenced by zero mean white Gaussian noise. The

weighting coefficients  ,  and  are constant therefore

reducing the computation time required to maintain a given

track.

The  filter algorithm involves two major steps

of computation as described below Mahafza et al.(2004);.

Prediction step as shown in Eqs. (1) & (2) ;

 


 , (1)

  ; (2)

Correction step;

  , (3)

 


 , (4)

 



 . (5)

where

,  and A are the target’s position, velocity and

acceleration respectively.

The subscripts ,  and  denote prediction, smoothing

and observation respectively.

 and  denote the sample number and sampling time

respectively.

The gain coefficients are determined as follows as

extracted from Mahafza et al.(2004);

  , (6)

   , (7)

  . (8)

where  is the damping coefficient and,

α, β and γ are the position, velocity and

acceleration smoothing coefficients.

As shown in Eqs. (6) ~ (8),  is constrained to lie in

the interval [0, 1]. Therefore, when  =0, then α=1 and

from equation 3, the smoothed position and the observed

position are superposed. On the other hand, if  =1, then α

=0 hence the predicted position and the smoothed position

are superposed. This leads to the conclusion that a large 

results in heavy smoothing. This phenomenon is further

illustrated below in Fig. 1, Fig. 2 and Fig. 3. Fig. 1

represents a case of under- damping where the damping

parameter, , is very close to zero leading to hardly any

smoothing hence the fluctuations on the prediction

trajectory throughout the tracking period. Fig. 3, on the

other hand, depicts a case of over- damping where the

damping parameter is too close to one resulting in lack of

sensitivity to target maneuvers. However, Fig. 2, shows a

critically damped tracker hence the stability and good

sensitivity to target maneuvers.

Fig. 1 True, observed, predicted and smoothed position,

large smoothing coefficient (=0.2)

Fig. 2 True, observed, predicted and smoothed position,

small smoothing coefficient (=0.64)
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Fig. 3 True, observed, predicted and smoothed position,

small smoothing coefficient (=0.8)

3. Simulation

3.1 Target's Initial Conditions

Simulation analysis was carried out on a target whose

original observed position lay on the coordinates (573,

1038.4) and was moving at the initial relative speed of 50

m/s as observed from the stationary own ship. The

sampling time interval was set at 3 seconds which

coincides with the radar scan rate of 20 rpm. A sample size

of =3,000 was investigated. These initial conditions are

summarized as shown below in Table 1;

Table 1 Target’s initial state

Position
(x, y)

Relative
speed
m/s

Sampling time
intervals, s Sample size

(573, 1038.4) 50.4 3 3,000

 sin
cos
sin
cos
sin
cos
 

(9)

  cossin. (10)

where a and b are constants that serve to control the initial

velocity of the input motion model.

Eq.(9) and Eq.(10) describe the input motion model of the

target dynamics as shown in Fig. 4.

Fig. 4 Target's input model motion

The data was then sampled at intervals of 3 seconds,

similar to radar update interval, resulting in the true

target’s position trajectory as shown in Fig. 7.

3.2 Noise Addition

Since the observed position is obtained from the ARPA,

the noise cannot be ignore. Generally, the error in the

observation follows a normal distribution. In this study, the

target’s observed state was obtained by corrupting the true

state with zero mean random white Gaussian noise with a

standard deviation, , of 10 m. Fig. 5 and Fig. 6 show the

error distribution in the observation.

Fig. 5 East- West error in the observation

Fig. 6 North- South error in the observation
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3.3 Filter Optimization

The smoothing coefficients  ,  and  values are

dependent on the value of the damping parameter, .

Therefore, in order to obtain the optimal smoothing

coefficients, the  is adjusted experimentally until the best

value that leads to the best performance is arrived at. Two

optimization approaches are investigated in this study, that

is, optimization by position and optimization by speed and

acceleration.

3.3.1 Optimization by Position.

This method involves comparing the true position, as

given in Eq. (9) and Eq. (10), with the predicted position

and smoothed position, by calculating the RTP (error

between the True and Predicted Position) and RTS (error

between the True and Smoothed Position) then plotting the

cumulative positional error against a range of the damping

factor, . The value of  corresponding to the least residual

error is the optimal  and hence results in the best

smoothing coefficients.

Fig. 7 shows the true, observed, predicted and smoothed

positions trajectories. The curve enclosed in the rectangle is

enlarged for better viewing as shown in Fig. 8 and lies in

the interval [2700, 3700] in the x- axis. Fig. 9 and 10 are

the residual errors between the true and predicted and true

and smoothed positions respectively corresponding to Fig. 7

and FIg. 8. In this case the damping parameter,  was

selected arbitrarily as 0.5 for illustration purpose.

Fig. 7 Target’s True, observed, predicted and smoothed

position ( =0.5)

Fig. 8 Enlarged view of target’s true, observed, predicted

and smoothed position ( =0.5) corresponding to
Fig. 7

Fig. 9 Difference between the true and predicted positions

corresponding to Fig. 7

Fig. 10 Difference between the true and smoothed positions

corresponding to Fig. 8

In order to do the evaluation, residual error is used to

measure the performance of filter. In this case, residual

error indicates the distance between two measurements. For

example the residual error T-P indicates the distance

between the true position and predicted position. Fig. 9

shows the residual error T-P when =0.5, and the

summation of residual error is cumulative error obtained

from the whole sample over the given tracking period. To
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determine the optimal ,  is set varying from 0 to 0.8

with a step size=0.01. When  is beyond 0.8 the residual

error increases extremely fast. Fig. 11 shows the

summation of residual error T-P while  is varying.

Fig. 11 Summation of residual error T-P for varying 

Since random error is used in the above, the curve in

Fig. 11 is not smooth. In order to get a relatively smooth

curve the simulation is done 30 times. Fig. 12 shows the

superposed curves of 30 simulation runs for the summation

of residual error T-P. After calculating the average value

of summation of each , Fig. 13 can be obtained. It can be

clearly seen that when =0.6, the summation of residual

error has a minimum point which implies that 0.6 is

determined as the optimal  by the method of evaluation by

summation of residual error of true and predicted position.

Similarly, when evaluation is done using the summation

of residual error T-S (True and Smoothed position), the

average value of summation is shown in Fig. 14. The

results show that the optimal  is 0.64.

Fig. 12 Summation of the error difference between true and

predicted positions for varying values of  after 30
simulation runs

Fig. 13 Summation of the error difference between true and

predicted positions for average values of summation

of each  corresponding to Fig. 12.

Fig. 14 Summation of the error difference between true and

smoothed positions for average values of  after 30
simulation runs

3.3.2 Optimization by velocity and acceleration.

The smoothed velocity and acceleration can be obtained

after filtering as shown in Eq. (4) and Eq. (5). The first

and second derivatives were obtained from Eq. (9) and Eq.

(10) resulting in the true target’s velocity and acceleration

as shown in Eq. (11) and Eq. (12) respectively. Since the

closer the true state variables are to the smoothed variables

the better, this method use the residual error of theoretical

and smoothed velocity, and the residual error of theoretical

and smoothed acceleration to determination the optimal .













(11)




 , (12)
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



sin

cos
sin
cos
sin


(13)





 cos. (14)

After running 30 simulations and calculating the average

summation of residual error of each , Fig. 15 and Fig. 16

were obtained. The minimum point of the curve indicates

that optimal  is 0.56 on evaluation via residual error of

true velocity and smoothed velocity. On the other hand, on

evaluation by residual error of true acceleration and

smoothed acceleration, the optimal  is 0.62 as shown in

Fig. 16.

Fig. 15 Average error of the cumulative error difference

between true and smoothed velocity for average

values of  after 30 simulation runs

4. Simulation Results and Analysis

As shown in section 3 above, the initial velocity and the

average velocity is a constant value, and the optimized 

is close to 0.6. From the position Eqs. (9) and Eqs. (10), if

the variables a and b change the initial velocity and

average velocity will also change.

Table 2 below shows the optimal damping parameter

obtained for various initial and average target velocities.

The quantities a and b serve to control the numerical size

of the initial and average target velocity. The results

indicate that different relative speeds result in different

optimal filtering coefficients. A target model moving at very

high initial relative speed requires a low value of the

optimal damping parameter compared to a slower target.

Fig. 17 is a plot of the optimal damping parameter 

corresponding to various magnitudes of the average relative

velocity.

Fig. 17 Optimal  for different values of the average

velocity

Fig. 16 Average error of the cumulative error difference

between true and smoothed acceleration for average

values of  after 30 simulation runs
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Table 2 Optimal  for varying velocities

a b Initial velocity
m/s

Average velocity
m/s

OKRTPP OKRTSP OKRTSV OKRTSA

3 5 12.9 10.34 0.77 0.78 0.75 0.78

15 30 31.30 19.24 0.65 0.68 0.62 0.67

30 50 50.36 30.33 0.60 0.64 0.56 0.62

60 90 88.43 54.02 0.53 0.57 0.49 0.55

70 120 111.40 69.28 0.52 0.55 0.45 0.53

90 160 145.40 91.20 0.50 0.54 0.43 0.51

Where

OKRTPP: Optimal Evaluated by Summation of the residual error between the true position and predicted position;

OKRTSP: Optimal Evaluated by Summation of the residual error between the true position and smoothed position;

OKRTSV: Optimal Evaluated by Summation of the residual error between the theoretical velocity and smoothed velocity

and,

OKRTSA: Optimal Evaluated by Summation of the residual error between the theoretical acceleration and smoothed

acceleration

5. Conclusion

A high dynamic warship requires accurate tracking and

precision in prediction of essential state parameters such as

position and velocity. This can only be ensured when an

optimal filter is used to carry out the estimation and

subsequently the prediction. This study focuses on the

optimization of the  filter under a noisy

environment where the noise is white Gaussian noise with

a standard deviation of 10m.

The results indicate that under the conditions of initial

target relative speed of 50 m/s, average speed of 30.4 m/s,

the optimal  for prediction is 0.56 while that of estimation
is 0.62. It is further shown that the optimal filtering

coefficients are dependent on the initial and the average

velocity of the target where different target speeds result in

varying smoothing coefficients. In addition, it is clearly

indicated that the optimal  is inversely proportional to the
velocity. Hence, in order to select the best filtering

coefficients using the  filter, one would have to put

into consideration the velocity of the target.

Based on the simulation results, this study proposes that

optimal  should lie in the interval [0.5, 0.7] when tracking
high dynamic warships.

Further analysis of this study will focus on adjusting the

optimal  at each point of the maneuvering target track to
take care of accelerations and maneuvers due to speed

changes at specific sample points. This will lead to better

filter performance in terms of noise reduction and

maintaining a good transient response. In addition the

 filter will be employed to improve the

precision of tracking. Finally, the filter will be investigated

for tracking the target when both own ship and target

warship are in motion.
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