DOI QR코드

DOI QR Code

Antioxidant Activity and Effective Compounds of Black Raspberry (Rubus coreanus Miquel) Extracted by Different Solvents

복분자 열매(Rubus coreanus Miquel)의 항산화 활성 및 생리활성물질

  • Jin, Dong-Hyeok (Department of Food Science and Technology, Pusan National University) ;
  • Seong, Jong-Hwan (Department of Food Science and Technology, Pusan National University) ;
  • Lee, Young-Geun (Department of Food Science and Technology, Pusan National University) ;
  • Kim, Dong-Seob (Department of Food Science and Technology, Pusan National University) ;
  • Chung, Hun-Sik (Department of Food Science and Technology, Pusan National University) ;
  • Kim, Han-Soo (Department of Food Science and Technology, Pusan National University)
  • Received : 2016.07.18
  • Accepted : 2016.09.20
  • Published : 2016.09.30

Abstract

The black raspberry (Rubus coreanus Miquel) contains anthocyanin, tannins, gallotannin, gallic acid, ferulic acid and phenolics. It brightens the eyes and protects the liver and kidneys. It was effective for anti-aging. Thus, the purpose of this study was to inform the excellence of black raspberry and to screen antioxidant activity to ensure the possibility as a functional material. In this study, bioactive compounds in black raspberry were determined. Additionally, black raspberry was extracted by CM (chloroform:methanol, 2:1, v/v), 70% methanol and 70% ethanol, and were investigated and compared in vitro methods. Total phenol and flavonoid contents were measured to compare each different solvents. In addition, DPPH radical scavenging activity and ABTS radical scavenging activity, ferric reducing antioxidant power, reducing power were determined to measure the antioxidant activity. The results were the highest in 70% ethanol extracts, and the higher the concentration showed a significantly higher antioxidant capacity. When observed the relationship between the study, antioxidant activity of black raspberry was supposed to affect by the anthocyanin, phenol and flavonoid contents.

Keywords

References

  1. R. C. Cristina and J. Rudolf, Free radical scavenging (antioxidant activity) of natural dissolved organic matter, Marine Chem., 177, 668 (2015). https://doi.org/10.1016/j.marchem.2015.10.008
  2. K. W. Lin, B. W. Wang, C. M. Wu, M. H. Yen, B. L. Wei, C. F. Hung and C. N. Lin, Antioxidant prenylated phenols of Artocarpus plants attenuate ultraviolet radiation-induced damage on human keratinocytes and fibroblasts, Phytochem. Letters, 14, 190 (2015). https://doi.org/10.1016/j.phytol.2015.10.013
  3. H. K. Ju, E. J. Cho, M. H. Jang, Y. Y. Lee, S. S. Hong, J. H. Park and S. W. Kwon, Characterization of increased phenolic compounds from fermented Bokbunja (Rubus coreanus Miq.) and related antioxidant activity, J. Pharm. Biomed. Anal., 49, 820 (2009). https://doi.org/10.1016/j.jpba.2008.12.024
  4. K. H. Kwon, W. S. Cha, D. C. Kim and H. J. Shin, A research and application of active ingredients in Bokbunja (Rubus coreanus Miquel), Korean J. Biotechnol. Bioeng., 21, 405 (2006).
  5. M. K. Lee, H. S. Lee, G. P. Choi, D. H. Oh, J. D. Kim, C. Y. Yu and H. Y. Lee, Screening of biological activities of the extractsfrom Rubus coreanus Miq, Korean J. Medicinal Crop Sci., 11, 5 (2003).
  6. S. J. Kim, H. J. Lee, K. H. Park, C. O. Rhee, I. J. Lim, H. J. Chung and J. H. Moon, Isolation and identificaion of low molecular phenolic antioxidants from ethtylacetate layer of Korean black raspberry (Rubus coreanus Miquel) wine, Korean J. Food Sci. Technol., 40, 129 (2008).
  7. S. J. Kim, J. Y. Kim and S. H. Baek, Effect of composts fermented with Korean medicinal herb wastes on physiological activity of Rubus coreanus Miquel (Bokbunja), Korean J. Plant Res., 4, 243 (2011).
  8. M. W. Lee, Phenolic compounds from the leaves of Rubus coreanum, Korean J. Pharmacogn., 39, 200 (1995).
  9. K. H. Kim, Y. A. Lee, J. S. Kim, D. I. Lee, Y. W. Choi, H. H. Kim and M. W. Lee, Antioxidative activity of tannins from Rubus coreanum, Yakhak Hoeji, 44, 354 (2000).
  10. I. Yoon, J. Y. Cho, J. H. Kuk, J. H. Wee. M. Y. Jang, T. H. Ahn and K. H. Park, Identification and activity of antioxidative compounds from Rubus coreanum fruit, Korean J. Food Sci. Technol., 34, 898 (2002).
  11. J. W. Choi, K. T. Lee, J. H. Ha, S. Y. Yun, C. D. Ko, H. J. Jung and H. J. Park, Antinociceptive and antiinflammatory effects of niga-ichigoside F1 and 23-hydroxytormentic acid obtained from Rubus coreanus, Biol. Pharm. Bull, 26, 1436 (2003). https://doi.org/10.1248/bpb.26.1436
  12. J. H. Nam, H. J. Jung, J. W. Choi, K. T. Lee and H. J. Park, The anti-gastropathic and anti-rheumatic effect of nigaichigoside F1 and 2,3-hydroxytormentic acid isolated from the unripe fruits Rubus coreanus in a rat model, Biol. Pharm. Bull., 29, 967 (2006). https://doi.org/10.1248/bpb.29.967
  13. H. J. Yoon, S. Y. Park, S. T. Oh, K. Y. Lee and S. Y. Yang, Extract of Rubus coreanus fruits increases expression and activity of endothelial nitric oxide synthase in the human umbilical vein endothelial cells, J. Life Sci., 21, 44 (2011). https://doi.org/10.5352/JLS.2011.21.1.44
  14. H. S. Kim, Y. Duan, M. A. Kim and S. H. Jang, Contents of antioxidative components from pulpy and seed in wild haw (Crataegus pinnatifida Bunge), J. Environ. Sci. Int., 23, 1791 (2014). https://doi.org/10.5322/JESI.2014.23.11.1791
  15. Y. Wang, J. Zhu, X. Meng, S. Liu, J. Mu, C. Ning, Comparison of polyphenol, anthocyanin and antioxidant capacity in four varieties of Lonicera caerulea berry extracts, Food Chem., 197, 522 (2016). https://doi.org/10.1016/j.foodchem.2015.11.006
  16. J. G. Kim, H. L. Kim, S. J. Kim and K. S. Park, Fruit quality, anthocyanin and total phenolic contents, and antioxidant activities of 45 blueberry cultivars grown in Suwon, Korea, J. Zhejiang University-Science B (Biomed. Biotechnol.), 14, 793 (2013). https://doi.org/10.1631/jzus.B1300012
  17. E. L. Jing, T. F. Song, H. Q. Zeng, L. Chang and P. N. Shao, Total flavonoids content, antioxidant and antimicrobial activities of extracts from Mosla chinensis Maxim. cv. Jiangxiangru, LWT-Food Sci. Technol., 64, 1022 (2015). https://doi.org/10.1016/j.lwt.2015.07.033
  18. Y. Duan, M. A. Kim, H. S. Kim, J. H. Seong, Y. G. Lee, D. S. Kim and H. S. Chung, Effects of feral haw (Crataegus pinnatifida Bunge) seed extracts on the antioxidant activities, J. Life Sci., 24, 386 (2014). https://doi.org/10.5352/JLS.2014.24.4.386
  19. M. S. Blois, Antioxidant determinations by the use of a stable free radical, Nature, 181, 1199 (1958). https://doi.org/10.1038/1811199a0
  20. A. Floegel, D. O. Kim, S. J. Chung, S. I. Koo and O. K. Chun, Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods, J. Food Compos. Anal., 24, 1043 (2011). https://doi.org/10.1016/j.jfca.2011.01.008
  21. J. Ortuno, R. Serrano, M. J. Jordan and S. Banon, Relationship between antioxidant status and oxidative stability in lamb meat reinforced with dietary rosemary diterpenes, Food Chem., 190, 1056 (2016). https://doi.org/10.1016/j.foodchem.2015.06.060
  22. R. Raudonis, L. Raudone, V. Jakstas and V. Janulis, comparative evaluation of post-column free radical scavenging and ferric reducing antioxidant power assays for screening of antioxidants in strawberries, J. Chromatogr. A, 1233, 8 (2012). https://doi.org/10.1016/j.chroma.2012.02.019
  23. M. Singhal, A. Paul and H. P. Singh, Synthesis and reducing power assay of methyl semicarbazone derivatives, J. Saudi Chem. Soc., 18, 121 (2014). https://doi.org/10.1016/j.jscs.2011.06.004
  24. N. Chorfa, S. Savard and K. Belkacemi, An efficient method for high-purity anthocyanin isomers isolation from wild blueberries and their radical scavenging activity, Food Chem., 197, 1226 (2016). https://doi.org/10.1016/j.foodchem.2015.11.076
  25. Y. M. Ji, M. Y. Kim, S. H. Lee, G. Y. Jang, M. Li, N. Yoon, K. M. Kim, J. Lee and H. S. Jeong, Effects of acidic treatments for anthocyanin and proanthocyanidin extraction on black bean (Glycine max Merrill.), J. Korean Soc. Food Sci. Nutr., 44, 1594 (2015). https://doi.org/10.3746/jkfn.2015.44.10.1594
  26. R. L. Prior, G. Cao, A. Martin, E. Sofic, J. McEwen, C. O'Brien, N. Lischner, M. Ehlenfeldt, W. Kalt, G. Krewer and C. M. Mainland, Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species, J. Agric. Food Chem., 46, 2686 (1998). https://doi.org/10.1021/jf980145d
  27. Y. J. Seo, J. S. Kim, J. C. Kim, Y. K. Kim, Y. S. Ahn and S. W. Cha, Effects of fertilization and co-application of compost tea on fruit growth and accumulation of anthocyanin in Omija (Schisandra chinensis Baillon), Korean J. Soil Sci. Fert., 47, 547 (2014). https://doi.org/10.7745/KJSSF.2014.47.6.547
  28. S. Y. Hwang, H. M. Choi and S. Y. Lim, Total phenolics of dried Platycodon grandiflorum and its effect on growth of human cancer cell lines, Korean J. Food Sci. Technol., 45, 84 (2013). https://doi.org/10.9721/KJFST.2013.45.1.84
  29. H. K. Kim and K. J. Joo, Antioxidative capacity and total phenolic compounds of methanol extract from Zizyphus jujuba, J. Korean Soc. Food Sci. Nutr., 34, 750 (2005). https://doi.org/10.3746/jkfn.2005.34.6.750
  30. Y. J. Cho, S. S. Chun, H. J. Kwon, J. H. Kim, S. J. Yoon and K. H. Lee, Comparison of phsiological activities between hot-water and ethanol extracts of Bokbunja (Rubus coreanum F.), J. Korean Soc. Food Sci. Nutr., 34, 790 (2005). https://doi.org/10.3746/jkfn.2005.34.6.790
  31. E. J. Kim, J. Y. Choi, M. Yu, M. Y. Kim, S. Lee and B. H. Lee, Total polyphenols, total flavonoid contents, and antioxidant activity of Korean natural and medicinal plants, Korean J. Food Sci. Technol., 44, 337 (2012). https://doi.org/10.9721/KJFST.2012.44.3.337
  32. V. Vaithiyanathan and S. Mirunalini, Assessment of anticancer activity: A comparison of dose-response effect of ethyl acetate and methanolic extracts of Pergularia daemia (Forsk), Oral Sci. Int., 13, 24 (2016). https://doi.org/10.1016/S1348-8643(15)00039-7
  33. P. C. Wootton, A. Moran and L. Ryan, Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin-Ciocalteu methods, Food Res. Int., 44, 217 (2011). https://doi.org/10.1016/j.foodres.2010.10.033
  34. K. I. Berker, K. Guclu, I. Tor and R. Apak, Comparative evaluation of Fe(III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP), and ferricyanide reagents, Talanta, 72, 1157 (2007). https://doi.org/10.1016/j.talanta.2007.01.019
  35. C. C. Wong, H. B. Li, K. W. Cheng and F. Chen, A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay, Food Chem, 97, 705 (2006). https://doi.org/10.1016/j.foodchem.2005.05.049
  36. D. D. Quy, E. A. Artik, L. T. N. Phuong, H. H. Lien, E. S. Felycia, I. Suryadi and Y. H. Ju, Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica, J. Food Drug Anal., 22, 296 (2014). https://doi.org/10.1016/j.jfda.2013.11.001
  37. C. A. Rice-Evans, N. J. Miller and G. Paganga, Structure-antioxidant activity relationships of flavonoids and phenolic acids, Free Radical Bio. Med., 20, 933 (1996). https://doi.org/10.1016/0891-5849(95)02227-9

Cited by

  1. 남해산 치자(Gardenia jasminoides Ellis fructus) 씨 추출물의 항산화 능 및 생리활성에 미치는 영향 vol.34, pp.2, 2016, https://doi.org/10.12925/jkocs.2017.34.2.400