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Abstract - Consider a linear fourth-order system with no zero that is represented in terms of four specific parameters: two 

damping ratios and two natural frequencies. We investigate several interesting questions about the maximum overshoot of the 

system with respect to the four-tuple parameters. Some remarkable results are presented.
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1. Introduction

The problem of designing controllers with transient 

response specifications is very important for practical 

applications. Several results on the problem of achieving 

non-overshooting step response have been provided in [1-3]. 

Jayasuriya [1] and Lin [4] presented some necessary and 

sufficient conditions on the pole-zero configurations for a 

class of systems to have a non-overshooting step response. 

However, the maximum overshoot of the fourth-order system 

with respect to the variation of pole locations has been 

seldom discussed in literature.

In this paper, we consider a fourth-order SISO linear system 

with no zero and attempt to investigate a certain damping 

characteristics of the system. In physics and engineering, the 

damping is generally defined by an effect that reduces the 

amplitude of oscillations in an oscillatory system. In other 

words, this means the dissipation of energy from a vibrating 

structure. For a second-order system, the damping is exactly 

characterized by only damping ratio irrespective of its natural 

frequency. Whereas various types of damping can be defined in 

multiple degree of freedom systems [5, 6]. There are many 

systems expressed by a fourth-order transfer function model, 

for example, any feedback systems of second-order process 

with a second-order controller and any third-order processes 

fed back by a first-order controller. The most popular one of 

the fourth-order systems is a 2 DOF vibrating structure, which 

consists of two mass-spring-damper models [5, 6]. There are 

also many other fourth-order models in robot manipulators and 

flight dynamic systems.

For the fourth-order system without zero, the maximum 

overshoot can be regarded as a measure of the damping of a 

high-order system even though the relationship between the 

two are not linearly proportional. In general, the decay ratio 

of oscillatory response relative to the change of parameters 

may be quite different from the effects of their maximum 

overshoots, and furthermore the maximum overshoot highly 

depends on the zeros of the system. 

We here concentrate on the maximum overshoot relative 

to the pole locations. The poles are represented in terms 

of four-tuple parameters such as two damping ratios and 

two natural frequencies. Main concerns in this paper are to 

investigate what the maximum overshoot of the 4th-order 

system will be going as the four-tuple parameters are 

changed. For examples, can we say that if both damping 

ratios increase, the maximum overshoot of the step response 

will be always reduced? It is well known that this problem 

cannot be analytically solved because the step response of 

4th-order system is a highly nonlinear function of the four 

parameters. 

In Section 2, three questions will be given and followed 

by answers to these questions in the Section 3. 

2. Problem statements

2.1 Step response of the firth-order system

A fourth-order transfer function model is represented by
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  

  


 

  
   

    
 


 



       (1)

where   and   for  , are the undamped natural 

frequencies and damping ratios, respectively.

The response of the fourth-order system (1) to the unit 

step input is expressed by 

  

        
  




 
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 sin                 (2)

where
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


                      (3)
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  
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   
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  


 
  

  




      
     


   
  

    

for   and   or  ≠          (5)

As a special case, if     , (2) is simplified as 

follows;

   
 sin        

 
  sin                  (6)

where

sin  


 cos  


  

 
  





 for                 (7)

2.2 Problem statements

As seen in (2), the unit step response of the fourth- 

order system in (1) is the sum of four cosine functions 

having time varying magnitudes, which is a highly nonlinear 

function of the four parameters. It is not possible to 

determine the peak time as well as the maximum value of 

the response algebraically. Main concern of this paper is 

investigate how the maximum overshoot of the fourth-order 

system varies as the parameters,   and   for    are 

changed. 

Assume that four parameters,   and  , in (1) 

are all positive, for which the system is stable. The 

problems of interesting here are as follows:

(i) For a fixed   and  , what is the relationship between 

the maximum overshoot of (1) and the undamped natural 

frequencies? 

(ii) Suppose that   and   are simultaneously changed in 

the opposite direction but the sum of both,   , increases, 

while   and   are constants and the same each other, that 

is,   . As expected, will the maximum overshoot of (1) 

be reduced for every set   that the condition holds? 

On the contrary to this, will the maximum overshoot of (1) 

increase if the sum    is reduced? 

(iii) For any constant   and  , will the maximum 

overshoot of (1) monotonically decrease only if both   and   

are increased?

On the contrary, will the reduction of both   and    

make the maximum overshoot of (1) monotonically increase?

3. Main Results

The following theorem states that the maximum overshoot 

of the system in (1) with fixed   and   remains 

unchanged irrespective of the values of   and   if two 

complex poles are moved along the individual -line at the 

same rate.

Theorem 1: Consider the fourth-order system in (1) of 

which the parameters,   and  , are fixed. Then the 

maximum overshoots of the system to the step input remain 

unchanged for any   if their   and   are changed 

with a constant ratio, that is,      (where c is a 

positive constant). 

Proof: For a given set of parameters     with 

    , the step response of (1) can be written by from 

(2),

     
  sin     

 
  sin             (8)

Let     and substituting this into (8}) yields

   
  sin   

 
  sin                     (9)

It is obvious that the maximum values of (8) and (9) are 

the same because (9) is nothing but a time-scaled function 
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Fig. 1 The maximum overshoot contours of the fourth- 

order systems on the    plane when    .  

(a)      

(b)        

 

     

Fig. 2 The maximum overshoot contours of the fourth- order 

systems on the    plane: when     , (a)

    , (b)     , and (c)     . 

of (8) by a factor  . Therefore, the maximum overshoot of 

the fourth-order system under the above condition remains 

unchanged without regard to the value of  .  ♣

 

In order to give the answers to the questions (ii) and 

(iii), we now introduce the maximum overshoot contours. 

We compute the set of   numerically for which the 

corresponding fourth-order systems with a fixed   

result in the same maximum overshoots. Then the maximum 

overshoot contours ranged over from zero to 90% can be 

depicted on the    plane. Fig.1 shows the maximum 

overshoot contours for the case of      (where 

  tan  ). It is seen that the contours of this case 

are symmetric with respect to the diagonal line,    . In 

particular, it is also remarkable that the maximum overshoot 

contours less than about 10 % are concave curves, whereas 

the contours higher than about 10 % are convex ones. 

For the purpose of comparisons, we present the maximum 

overshoot contours for different cases: (a)     , (b) 

    , (c)      (where   tan  ), as shown in 

Fig. 2. According to the Theorem 1, the maximum overshoots 

of (1) depend on only   for any   provided that 

    . It allows us to obtain all the contours in Figs. 1 

and 2 by letting     arbitrarily. Through these 

figures, we can see that the maximum overshoot contours of 

(1) are drastically changed depending on the rates of  . 

From Fig.2, the contours for the case where 

       (see Fig. 2(b)) are identical to those of 

the case of       if the parameters of two 

axes,   and  , are exchanged each other. This implies that 

the maximum overshoot contours for the case of 

       are identical to those for 

       if   is replaced by   and   instead 

of   in Fig. 2(a). 

Here is the answer to the question (ii) mentioned in the 

Section 2.
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Fact 1: For the fourth-order system in (1) with   

  , it follows that

(a) there exist some sets of   in which the 

maximum overshoot of     rather grows even 

though the sum,   , is increased, and 

(b) on the contrary, there are some sets of   in 

which the maximum overshoot of     rather 

decreases even though the sum,   , is reduced.

Proof: (a) On the Fig.1, we can make a tangent line at a 

point on any convex shape contours. For example, let 

 
  

  be a point on the 50 % maximum overshoot 

contour (briefly, 50 % contour hereafter), where the contour 

and the diagonal line intersect, as shown in Fig. 3. 

Fig. 3 Region A and B supporting the Fact 1 in the 

   plane.

The tangent line is given by the equation   
, 

where  is an intercept constant on the   axis. The 

green regions, A and A', are the patches composed by the 

tangent line and the 50 % contour. Let   be the subset 

consisting of   lower than the 50 % contour. 

According to the observation results shown in Fig.1 and 

Fig.2, it is true that the maximum overshoot of     

for any  ∈  becomes larger than 50%. On the 

other hand, it follows that

    ≥

 
 

 , for all  ∈ or ′ . 

The regions A and A' belong to the set  . Therefore the 

regions like A and A' are the sets satisfying the part (a).

(b) Similarly, we can draw a tangent line at a point on 

any concave shape contours in Fig. 3. For example, let 

 
  

  be a point on the 3 % contour, where the 

contour and the diagonal line intersect. This tangent line is 

expressed by the equation   
, where  is an 

intercept constant on the   axis. The regions, B and B', are 

also the parches composed by the tangent line and the 3 % 

contour. Let   be the subset consisting of   upper 

than the 3 %  contour. Similar to the proof of (a), it is 

true that the maximum overshoot of     for any 

 ∈  becomes smaller than 3 %. However, it follows 

that  

  ≤

 
 

 , for all  ∈ or ′ . 

The regions B and B' belong to  . Therefore the regions 

like B and B' are the sets satisfying the part (b).   ♣

Now, let us consider the question (iii) in Section 2.

Fact 2: For the fourth-order system in (1) with the fixed 

  and  , it follows that 

(a) there exist some sets of   in which the 

maximum overshoot of     rather grows even though 

both   and   increase, and 

(b) on the contrary, there are some sets of   in which 

the maximum overshoot of     rather decreases even 

though both   and   are reduced.

Proof: (a) The proof will proceed by finding such a 

region in the    plane. Fig. 4 indicates the 6 % 

maximum overshoot contour (briefly, 6 % contour hereafter) 

of the fourth-order system with the constants    and 

  . According to the results shown in Fig. 2, recall 

that for any point   under the 6 % contour in the 

   plane, the corresponding systems     have 

smaller overshoots than those of the other points either on 

the curve or above. As shown in Fig. 4, we draw a 

horizontal line of    passing through the 6 % 

contour and mark the points with  ,   and   at which 

the 6 % contour intersects with the horizontal line. The 

models     corresponding to these points have the 

same values of the maximum overshoot. The regions, C and 

D, are the sets of   composed by the graphs of the 

horizontal line and the 6 % contour. It is evident that both 

  and   are greater than or equal to the  point 

   if the point   is chosen in the region D. 

Since any points   in the region D are under the 6 % 

contour, the maximum overshoot of the corresponding 

fourth-order systems are larger than 6 %. Therefore the 

region D is the set satisfying the part (a). 
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Points     (%) Remark

 0.1678 0.6740 6.00 See Fig. 4

 0.200 0.6738 5.97 A point inside C

 0.269 0.6740 6.00 See Fig. 4

 0.350 0.6741 6.018 A point inside D

 0.432 0.6740 6.00 See Fig. 4

Table 2 The Max. overshoots ( ) of the systems 

corresponding to five points chosen in Fig. 4 when 

    and   . 

(b) Similarly, the part (b) can be proved. Both   and   

are lower than or equal to the  point     if the 

point   is chosen in the region C. However, since any 

points   in the region C are over the 6 % contour, 

the maximum overshoot of the corresponding fourth-order 

systems are smaller than 6 %. Therefore the region C is the 

set satisfying the part (b).    ♣

Fig. 4 The 6 % maximum overshoot contour of the 

fourth-order system when    and   .

Points      (%) Remark

 0.38 0.38 0.76 50.23 See Fig. 3

 ′ 0.78 0.05 0.83 56.45 A point inside A'

 0.77 0.77 1.54 2.995 See Fig. 3

 0.54 0.98 1.52 2.781 A point inside B

Table 1 The Max. overshoots ( ) of the systems 

corresponding to four points chosen in Fig. 3 when 

  . 

Example 1. Let us demonstrate the Fact 1. We first pick 

two points   and  ′  inside A' in the Fig. 3. As shown 

in Table 1, the system     corresponding to  ′  has 

larger    than that of   but its maximum overshoot 

rather increases. For   and   inside B,    has 

smaller overshoot than   although its    is reduced.

Example 2. As an example for the Fact 2, we choose 

five points such as  ,   and   on the 6 % contour, and 

  inside the region C,   inside the region D, respectively. 

Table 2 shows that the maximum overshoot of   

decreases even though two damping ratios of   become lower 

than those of  , while    has a little larger overshoot 

although both damping ratios of   are increased from  .

4. Conclusion

We have derived some remarkable results about the 

maximum overshoot of a fourth-order system without zero 

which is represented by the four-tuple parameter 

   . For this fourth-order system, the following 

results are obtained:

(i) The maximum overshoot of the system to the step 

input remains unchanged with respect to the value of 

  as long as their two natural frequencies are changed 

with a constant ratio, that is,     .

(ii) An insightful chart indicating the maximum overshoot 

contours on the     plane is proposed.

(iii) The maximum overshoot of the fourth-order system 

does not have monotonicity with respect to either increase 

or decrease of   , and both   and   as well.
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