DOI QR코드

DOI QR Code

Improvement of Piezoelectric Performance of the CNT/PVDF Composite Film by Enhancing Conductivity of the PEDOT:PSS Electrodes

PEDOT:PSS 전극의 전도도향상에 의한 CNT/PVDF 복합막의 압전성능 개선

  • Lim, Young-Taek (School of Electrical Engineering, Inha University) ;
  • Lee, Sunwoo (Department of Electrical Information, Inha Technical College)
  • 임영택 (인하대학교 전기공학과) ;
  • 이선우 (인하공업전문대학 전기정보과)
  • Received : 2016.09.23
  • Accepted : 2016.10.10
  • Published : 2016.11.01

Abstract

In this paper, we fabricated flexible CNT/PVDF (carbon nanotube / polyvinylidene fluoride) piezoelectric composite device with flexible poly(3,4-ethylenedioxythiophene) : polystyrene sulfonate (PEDOT:PSS) conducting polymer electrode using spray coating method. We tried to improve the piezoelectric performance from the CNT/PVDF composite film by enhancing electrical conductivity of the PEDOT:PSS electrodes. Electrical conductivity of the PEDOT:PSS electrode was enhanced by dipping it into the EG (ethylene glycol) solvent. Changes of chemical composition of the PEDOT:PSS electrode were analyzed with the dipping time by XPS (x-ray photoelectron spectroscopy) in terms of oxygen (O1s). Finally, Piezoelectric performances such as output voltage and current were measured with the dipping time. We found that enhanced electrical conductivity of the PEDOT:PSS electrodes resulted in improvement of the piezoelectric performance of the CNT/PVDF films.

Keywords

References

  1. R. Yang, Y. Qin, C. Li, G. Zhu, and Z. L. Wang, Nano Lett., 9, 1201 (2009). [DOI: http://dx.doi.org/10.1021/nl803904b]
  2. P. Ueberschlag, Sensor Review, 21, 118 (2001). [DOI: http://dx.doi.org/10.1108/02602280110388315]
  3. W. Ma, J. Zhang, S. Chen, and X. Wang, J. Macromol. Sci. Phys., B47, 434 (2008). [DOI: http://dx.doi.org/10.1080/00222340801954811]
  4. B. Mohammadi, A. A. Yousefi, and S. M. Bellah, Polym. Test., 26, 42 (2007). [DOI: http://dx.doi.org/10.1016/j.polymertesting.2006.08.003]
  5. L. Li, B. Li, M. A. Hood, and C. Y. Li, Polymer, 50, 953 (2009). [DOI: http://dx.doi.org/10.1016/j.polymer.2008.12.031]
  6. J. J. Peterson, M. Werre, Y. C. Simon, E. B. Coughlin, and K. R. Carter, Macromolecules, 42, 8594 (2009). [DOI: http://dx.doi.org/10.1021/ma901703r]
  7. N. Lim, B. Lee, D. Choi, G. Kim, H. Kim. J. Kim, J. Lee, Y. Kahng, and K. Lee, American Physical Society., 109, 106405 (2012).
  8. A. J. Heeger, Rev. Mod. Phys., 73, 681 (2001). [DOIl http://dx.doi.org/10.1103/RevModPhys.73.681]
  9. A. Lenza, H. Kariisc, A. Pohlc, P. Perssonb, and L. Ojamaea, Chem. Phys., 384, 44 (2011). [DOI: http://dx.doi.org/10.1016/j.chemphys.2011.05.003]
  10. K. E. Aasmundtveit, E. J. Samuelsen, L.A.A. Pettersson, O. Inganas, T. Johansson, and R. Feidenhans'l, Synth. Met., 101, 561 (1999). [DOI: http://dx.doi.org/10.1016/S0379-6779(98)00315-4]
  11. J. Ouyang, Q. Xu, C. W. Chu, Y. Yang, G. Li, and J. Shinar, Polymer, 45, 8443 (2004). [DOI: http://dx.doi.org/10.1016/j.polymer.2004.10.001]
  12. S. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 462 (2015). [DOI: http://dx.doi.org/10.4313/JKEM.2015.28.7.462]