DOI QR코드

DOI QR Code

Protective Effects of Ecklonia stolonifera Extract on Ethanol-Induced Fatty Liver in Rats

  • Bang, Chae-Young (Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University) ;
  • Byun, Jae-Hyuk (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Choi, Hye-Kyung (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Choi, Jae-Sue (Department of Food Science and Nutrition, Pukyong National University) ;
  • Choung, Se-Young (Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University)
  • Received : 2016.08.09
  • Accepted : 2016.09.29
  • Published : 2016.11.01

Abstract

Chronic alcohol consumption causes alcoholic liver disease, which is associated with the initiation of dysregulated lipid metabolism. Recent evidences suggest that dysregulated cholesterol metabolism plays an important role in the pathogenesis of alcoholic fatty liver disease. Ecklonia stolonifera (ES), a perennial brown marine alga that belongs to the family Laminariaceae, is rich in phlorotannins. Many studies have indicated that ES has extensive pharmacological effects, such as antioxidative, hepatoprotective, and antiinflammatory effects. However, only a few studies have investigated the protective effect of ES in alcoholic fatty liver. Male Sprague-Dawley rats were randomly divided into normal diet (ND) (fed a normal diet for 10 weeks) and ethanol diet (ED) groups. Rats in the ED group were fed a Lieber-DeCarli liquid diet (containing 5% ethanol) for 10 weeks and administered ES extract (50, 100, or 200 mg/kg/day), silymarin (100 mg/kg/day), or no treatment for 4 weeks. Each treatment group comprised of eight rats. The supplementation with ES resulted in decreased serum levels of triglycerides (TGs), total cholesterol, alanine aminotransferase, and aspartate aminotransferase. In addition, there were decreases in hepatic lipid and malondialdehyde levels. Changes in liver histology, as analyzed by Oil Red O staining, showed that the ES treatment suppressed adipogenesis. In addition, the ES treatment increased the expression of fatty acid oxidation-related genes (e.g., PPAR-${\alpha}$ and CPT-1) but decreased the expression of SREBP 1, which is a TG synthesis-related gene. These results suggest that ES extract may be useful in preventing fatty acid oxidation and reducing lipogenesis in ethanol-induced fatty liver.

Keywords

References

  1. Abrams, M. A. and Cooper, C. (1976) Quantitative analysis of metabolism of hepatic triglyceride in ethanol-treated rats. Biochem. J. 156, 33-46. https://doi.org/10.1042/bj1560033
  2. Bailey, S. M. and Cunningham, C. C. (2002) Contribution of mitochondria to oxidative stress associated with alcoholic liver disease. Free Radic. Biol. Med. 32, 11-16. https://doi.org/10.1016/S0891-5849(01)00769-9
  3. Blomstrand, R. and Kager, L. (1973) The combustion of triolein-1-14C and its inhibition by alcohol in man. Life Sci. 13, 113-123. https://doi.org/10.1016/0024-3205(73)90186-0
  4. Buege, J. A. and Aust, S. D. (1978) Microsomal lipid peroxidation. Methods Enzymol. 52, 302-310. https://doi.org/10.1016/S0076-6879(78)52032-6
  5. Cairns, S. R. and Peters, T. J. (1983) Biochemical analysis of hepatic lipid in alcoholic and diabetic and control subjects. Clin. Sci. 65, 645-652. https://doi.org/10.1042/cs0650645
  6. Cederbaum, A. I. (2010) Role of CYP2E1 in ethanol-induced oxidant stress, fatty liver and hepatotoxicity. Dig. Dis. 28, 802-811. https://doi.org/10.1159/000324289
  7. Chiu, P. Y., Lam, P. Y., Leung, H. Y., Leong, P. K., Ma, C. W., Tang, Q. T. and Ko, K. M. (2011) Co-treatment with Shengmai San-derived herbal product ameliorates chronic ethanol-induced liver damage in rats. Rejuvenation Res. 14, 17-23. https://doi.org/10.1089/rej.2010.1041
  8. DeCarli, L. M. and Lieber, C. S. (1967) Fatty liver in the rat after prolonged intake of ethanol with a nutritionally adequate new liquid diet. J. Nutr. 91, 331-336. https://doi.org/10.1093/jn/91.3_Suppl.331
  9. Feigelson, E. B., Pfaff, W. W., Karmen, A. and Steinberg, D. (1961) The role of plasma free fatty acids in development of fatty liver. J. Clin. Invest. 40, 2171-2179. https://doi.org/10.1172/JCI104443
  10. Folch, J., Lees, M. and Sloane-Stanley, G. (1957) A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497-509.
  11. Gearing, K. L., Gottlicher, M., Widmark, E., Banner, C. D., Tollet, P., Stromstedt, M., Rafter, J. J., Berge, R. K. and Gustafsson, J. A. (1994) Fatty acid activation of the peroxisome proliferator activated receptor, a member of the nuclear receptor gene superfamily. J. Nutr. 124, 1284S-1288S. https://doi.org/10.1093/jn/124.suppl_8.1284S
  12. Goo, H. R., Choi, J. S. and Na, D. H. (2010) Quantitative determination of major phlorotannins in Ecklonia stolonifera. Arch. Pharm. Res. 33, 539-544. https://doi.org/10.1007/s12272-010-0407-y
  13. Horton, J. D., Goldstein, J. L. and Brown, M. S. (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125-1131. https://doi.org/10.1172/JCI0215593
  14. Horton, J. D., Shimomura, I., Brown, M. S., Hammer, R. E., Goldstein, J. L. and Shimano, H. (1998) Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J. Clin. Invest. 101, 2331-2339. https://doi.org/10.1172/JCI2961
  15. Ji, C. and Kaplowitz, N. (2003) Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice. Gastroenterology 124, 1488-1499. https://doi.org/10.1016/S0016-5085(03)00276-2
  16. Joe, M. J., Kim, S. N., Choi, H. Y., Shin, W. S., Park, G. M., Kang, D. W. and Kim, Y. K. (2006) The inhibitory effects of eckol and dieckol from Ecklonia stolonifera on the expression of matrix metalloproteinase- 1 in human dermal fibroblasts. Biol. Pharm. Bull. 29, 1735-1739. https://doi.org/10.1248/bpb.29.1735
  17. Jung, H. A., Hyun, S. K., Kim, H. R. and Choi, J. S. (2006) Angiotensinconverting enzyme I inhibitory activity of phlorotannins from Ecklonia stolonifera. Fisheries Sci. 72, 1292-1299. https://doi.org/10.1111/j.1444-2906.2006.01288.x
  18. Kang, H. S., Kim, H. R., Byun, D. S., Son, B. W., Nam, T. J. and Choi, J. S. (2004) Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Arch. Pharm. Res. 27, 1226-1232. https://doi.org/10.1007/BF02975886
  19. Kang, K. A., Lee, K. H., Chae, S., Koh, Y. S., Yoo, B. S., Kim, J. H., Ham, Y. M., Baik, J. S., Lee, N. H. and Hyun, J. W. (2005) Triphlorethol-A from Ecklonia cava protects V79-4 lung fibroblast against hydrogen peroxide induced cell damage. Free Radic. Res. 39, 883-892. https://doi.org/10.1080/10715760500161165
  20. Kim, A. R., Lee, M. S., Shin, T. S., Hua, H., Jang, B. C., Choi, J. S., Byun, D. S., Utsuki, T., Ingram, D. and Kim, H. R. (2011) Phlorofucofuroeckol A inhibits the LPS-stimulated iNOS and COX-2 expressions in macrophages via inhibition of $NF-{\kappa}B$, Akt, and p38 MAPK. Toxicol. In vitro 25, 1789-1795. https://doi.org/10.1016/j.tiv.2011.09.012
  21. Kim, A. R., Shin, T. S., Lee, M. S., Park, J. Y., Park, K. E., Yoon, N. Y., Kim, J. S., Choi, J. S., Jang, B. C., Byun, D. S., Park, N. K. and Kim, H. R. (2009) Isolation and identification of phlorotannins from Ecklonia stolonifera with antioxidant and anti-inflammatory properties. J. Agric. Food Chem. 57, 3483-3489. https://doi.org/10.1021/jf900820x
  22. Kim, Y. C., An, R. B., Yoon, N. Y., Nam, T. J. and Choi, J. S. (2005) Hepatoprotective constituents of the edible brown alga Ecklonia stolonifera on tacrine-induced cytotoxicity in HepG2 cells. Arch. Pharm. Res. 28, 1376-1380. https://doi.org/10.1007/BF02977904
  23. Kuda, T., Kunii, T., Goto, H., Suzuki, T. and Yano, T. (2007) Varieties of antioxidant and antibacterial properties of Ecklonia stolonifera and Ecklonia kurome products harvested and processed in the Noto peninsula, Japan. Food Chem. 103, 900-905. https://doi.org/10.1016/j.foodchem.2006.09.042
  24. Laramee, P., Kusel, J., Leonard, S., Aubin, H. J., Francois, C. and Daeppen, J. B. (2013) The economic burden of alcohol dependence in Europe. Alcohol Alcohol. 48, 259-269. https://doi.org/10.1093/alcalc/agt004
  25. Lee, G. Y., Kim, N. H., Zhao, Z. S., Cha, B. S. and Kim, Y. S. (2004) Peroxisomal-proliferator-activated receptor alpha activates transcription of the rat hepatic malonyl-CoA decarboxylase gene: a key regulation of malonyl-CoA level. Biochem. J. 378, 983-990. https://doi.org/10.1042/bj20031565
  26. Lee, J. H., Oh, H. Y. and Choi, J. S. (1996) Preventive effect of Ecklonia stolonifera on the frequency of benzo(a)pyrene-induced chromosomal aberrations. J. Food Sci. Nutr. 1, 64-68.
  27. Lee, M. S., Shin, T., Utsuki, T., Choi, J. S., Byun, D. S. and Kim, H. R. (2012) Isolation and identification of phlorotannins from Ecklonia stolonifera with antioxidant and hepatoprotective properties in tacrine-treated HepG2 cells. J. Agric. Food Chem. 60, 5340-5349. https://doi.org/10.1021/jf300157w
  28. Lefevre, A. F., DeCarli, L. M. and Lieber, C. S. (1972) Effect of ethanol on cholesterol and bile acid metabolism. J. Lipid Res. 13, 48-55.
  29. Lieber, C. S. (1997) Cytochrome P-4502E1: its physiological and pathological role. Physiol. Rev. 77, 517-544. https://doi.org/10.1152/physrev.1997.77.2.517
  30. Lieber, C. S. and Decarli, L. M. (1989) Liquid diet technique of ethanol administration: 1989 update. Alcohol Alcohol. 24, 197-211.
  31. Moon, H. E., Islam, M. N., Ahn, B. R., Chowdhury, S. S., Sohn, H. S., Jung, H. A. and Choi, J. S. (2011) Protein tyrosine phosphatase 1B and $\alpha$-glucosidase inhibitory phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis. Biosci. Biotechnol. Biochem. 75, 1472-1480. https://doi.org/10.1271/bbb.110137
  32. Munday, M. R. and Hemingway, C. J. (1999) The regulation of acetyl-CoA carboxylase-a potential target for the action of hypolipidemic agents. Adv. Enzyme Regul. 39, 205-234. https://doi.org/10.1016/S0065-2571(98)00016-8
  33. Park, C. S., Hwang, E. K., Lee, S. J., Roh, K. W. and Sohn, C. H. (1994) Age and Growth of Ecklonia stolonzfera Okamura in Pusan Bay, Korea. Bull. Korean Fish. Soc. 27, 390-396.
  34. Ragan, M. A. and Glombitza, K. W. (1986) Phlorotannins, brown algal polyphenols. Prog. Phycol. Res. 4, 129-241.
  35. Shield, K. D., Rylett, M., Gmel, G., Gmel, G., Kehoe-Chan, T. A. and Rehm, J. (2013) Global alcohol exposure estimates by country, territory and region for 2005-a contribution to the Comparative Risk Assessment for the 2010 Global Burden of Disease Study. Addiction 108, 912-922. https://doi.org/10.1111/add.12112
  36. Shim, S. Y., Choi, J. S. and Byun, D. S. (2009) Inhibitory effects of phloroglucinol derivatives isolated from Ecklonia stolonifera on $Fc{\varepsilon}RI$ expression. Bioorg. Med. Chem. 17, 4734-4739. https://doi.org/10.1016/j.bmc.2009.04.050
  37. Teli, M., Day, C., James, O., Burt, A. and Bennett, M. (1995) Determinants of progression to cirrhosis or fibrosis in pure alcoholic fatty liver. Lancet 346, 987-990. https://doi.org/10.1016/S0140-6736(95)91685-7
  38. Wu, M. T., Tzang, B. S., Chang, Y. Y., Chiu, C. H., Kang, W. Y., Huang, C. H. and Chen, Y. C. (2011) Effects of Antrodia camphorata on alcohol clearance and antifibrosis in livers of rats continuously fed alcohol. J. Agric. Food Chem. 59, 4248-4254. https://doi.org/10.1021/jf104561h
  39. Yoon, N. Y., Chung, H. Y., Kim, H. R. and Choi, J. S. (2008a) Acetyl- and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fisheries Sci. 74, 200-207. https://doi.org/10.1111/j.1444-2906.2007.01511.x
  40. Yoon, N. Y., Eom, T. K., Kim, M. M. and Kim, S. K. (2009) Inhibitory effect of phlorotannins isolated from Ecklonia cava on mushroom tyrosinase activity and melanin formation in mouse B16F10 melanoma cells. J. Agric. Food Chem. 57, 4124-4129. https://doi.org/10.1021/jf900006f
  41. Yoon, N. Y., Kim, H. R., Chung, H. Y. and Choi, J. S. (2008b) Anti-hyperlipidemic effect of an edible brown algae, Ecklonia stolonifera, and its constituents on poloxamer 407-induced hyperlipidemic and cholesterol-fed rats. Arch. Pharm. Res. 31, 1564-1571. https://doi.org/10.1007/s12272-001-2152-8
  42. You, M. and Crabb, D. W. (2004) Recent advances in alcoholic liver disease II. Minireview: molecular mechanisms of alcoholic fatty liver. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G1-G6. https://doi.org/10.1152/ajpgi.00056.2004
  43. You, M., Fischer, M., Deeg, M. A. and Crabb, D. W. (2002) Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J. Biol. Chem. 277, 29342-29347. https://doi.org/10.1074/jbc.M202411200
  44. You, M., Matsumoto, M., Pacold, C. M., Cho, W. K. and Crabb, D. W. (2004) The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 127, 1798-1808. https://doi.org/10.1053/j.gastro.2004.09.049
  45. Zeng, T. and Xie, K. Q. (2009) Ethanol and liver: recent advances in the mechanisms of ethanol-induced hepatosteatosis. Arch. Toxicol. 83, 1075-1081. https://doi.org/10.1007/s00204-009-0457-4
  46. Zou, Y., Qian, Z. J., Li, Y., Kim, M. M., Lee, S. H. and Kim, S. K. (2008) Antioxidant effects of phlorotannins isolated from Ishige okamurae in free radical mediated oxidative systems. J. Agric. Food Chem. 56, 7001-7009. https://doi.org/10.1021/jf801133h

Cited by

  1. Recent advances in pharmacological research on Ecklonia species: a review vol.40, pp.9, 2017, https://doi.org/10.1007/s12272-017-0948-4
  2. A specific amino acid formula prevents alcoholic liver disease in rodents vol.314, pp.5, 2018, https://doi.org/10.1152/ajpgi.00231.2017
  3. -Induced Liver Injury in Sprague-Dawley Rats vol.26, pp.2, 2018, https://doi.org/10.4062/biomolther.2017.199
  4. affected by ocean acidification and warming vol.50, pp.3, 2019, https://doi.org/10.1111/are.13957
  5. Polydatin Protects Rat Liver against Ethanol-Induced Injury: Involvement of CYP2E1/ROS/Nrf2 and TLR4/NF-κB p65 Pathway vol.2017, pp.None, 2016, https://doi.org/10.1155/2017/7953850
  6. 갈조류 곰피(Ecklonia stolonifera)의 간 건강기능성 vol.51, pp.4, 2016, https://doi.org/10.23093/fsi.2018.51.4.334
  7. Ecklonia stolonifera Extract Suppresses Lipid Accumulation by Promoting Lipolysis and Adipose Browning in High-Fat Diet-Induced Obese Male Mice vol.9, pp.4, 2016, https://doi.org/10.3390/cells9040871
  8. Modulation of the TLR4/MyD88/NF- κ B Pathway by Humulus japonicus Extract Protects Against Alcohol-Induced Liver Injury in a Rat Model vol.24, pp.1, 2016, https://doi.org/10.1089/jmf.2019.4650
  9. Plant-Based Foods and Their Bioactive Compounds on Fatty Liver Disease: Effects, Mechanisms, and Clinical Application vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/6621644
  10. Ibuprofen Increases the Hepatotoxicity of Ethanol through Potentiating Oxidative Stress vol.29, pp.2, 2016, https://doi.org/10.4062/biomolther.2020.108
  11. Effects of Ecklonia stolonifera extract on the obesity and skeletal muscle regeneration in high-fat diet-fed mice vol.82, pp.None, 2016, https://doi.org/10.1016/j.jff.2021.104511
  12. Oyster hydrolysate ameliorates ethanol diet‐induced alcoholic fatty liver by regulating lipid metabolism in rats vol.56, pp.7, 2021, https://doi.org/10.1111/ijfs.14983
  13. Dieckol: a brown algal phlorotannin with biological potential vol.142, pp.None, 2016, https://doi.org/10.1016/j.biopha.2021.111988