DOI QR코드

DOI QR Code

Pyrrole-Derivative of Chalcone, (E)-3-Phenyl-1-(2-Pyrrolyl)-2-Propenone, Inhibits Inflammatory Responses via Inhibition of Src, Syk, and TAK1 Kinase Activities

  • Yang, Sungjae (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Kim, Yong (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Jeong, Deok (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Kim, Jun Ho (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Kim, Sunggyu (Research and Business Foundation, Sungkyunkwan University) ;
  • Son, Young-Jin (College of Pharmacy, Sunchon National University) ;
  • Yoo, Byong Chul (Colorectal Cancer Branch, Research Institute, National Cancer Center) ;
  • Jeong, Eun Jeong (Department of Science Education, Kangwon National University) ;
  • Kim, Tae Woong (Department of Biochemistry, Kangwon National University) ;
  • Han Lee, In-Sook (Department of Science Education, Kangwon National University) ;
  • Cho, Jae Youl (Department of Genetic Engineering, Sungkyunkwan University)
  • Received : 2016.02.11
  • Accepted : 2016.04.21
  • Published : 2016.11.01

Abstract

(E)-3-Phenyl-1-(2-pyrrolyl)-2-propenone (PPP) is a pyrrole derivative of chalcone, in which the B-ring of chalcone linked to ${\beta}$-carbon is replaced by pyrrole group. While pyrrole has been studied for possible Src inhibition activity, chalcone, especially the substituents on the B-ring, has shown pharmaceutical, anti-inflammatory, and anti-oxidant properties via inhibition of NF-${\kappa}B$ activity. Our study is aimed to investigate whether this novel synthetic compound retains or enhances the pharmaceutically beneficial activities from the both structures. For this purpose, inflammatory responses of lipopolysaccharide (LPS)-treated RAW264.7 cells were analyzed. Nitric oxide (NO) production, inducible NO synthase (iNOS) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) mRNA expression, and the intracellular inflammatory signaling cascade were measured. Interestingly, PPP strongly inhibited NO release in a dose-dependent manner. To further investigate this anti-inflammatory activity, we identified molecular pathways by immunoblot analyses of nuclear fractions and whole cell lysates prepared from LPS-stimulated RAW264.7 cells with or without PPP pretreatment. The nuclear levels of p50, c-Jun, and c-Fos were significantly inhibited when cells were exposed to PPP. Moreover, according to the luciferase reporter gene assay after cotransfection with either TRIF or MyD88 in HEK293 cells, NF-${\kappa}B$-mediated luciferase activity dose-dependently diminished. Additionally, it was confirmed that PPP dampens the upstream signaling cascade of NF-${\kappa}B$ and AP-1 activation. Thus, PPP inhibited Syk, Src, and TAK1 activities induced by LPS or induced by overexpression of these genes. Therefore, our results suggest that PPP displays anti-inflammatory activity via inhibition of Syk, Src, and TAK1 activity, which may be developed as a novel anti-inflammatory drug.

Keywords

References

  1. Ajibade, A. A., Wang, H. Y. and Wang, R. F. (2013) Cell type-specific function of TAK1 in innate immune signaling. Trends Immunol. 34, 307-316. https://doi.org/10.1016/j.it.2013.03.007
  2. Akira, S. and Takeda, K. (2004) Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499-511. https://doi.org/10.1038/nri1391
  3. Baek, K. S., Hong, Y. D., Kim, Y., Sung, N. Y., Yang, S., Lee, K. M., Park, J. Y., Park, J. S., Rho, H. S., Shin, S. S. and Cho, J. Y. (2015) Anti-inflammatory activity of AP-SF, a ginsenoside-enriched fraction, from Korean ginseng. J. Ginseng Res. 39, 155-161. https://doi.org/10.1016/j.jgr.2014.10.004
  4. Brown, K., Park, S., Kanno, T., Franzoso, G. and Siebenlist, U. (1993) Mutual regulation of the transcriptional activator $NF-{\kappa}B$ and its inhibitor, $I{\kappa}B{\alpha}$. Proc. Natl. Acad. Sci. U.S.A. 90, 2532-2536. https://doi.org/10.1073/pnas.90.6.2532
  5. Byeon, S. E., Yi, Y.-S., Oh, J., Yoo, B. C., Hong, S. and Cho, J. Y. (2012) The role of Src kinase in macrophage-mediated inflammatory responses. Mediators Inflamm. 2012, 512926.
  6. Byeon, S. E., Lee, Y. G., Kim, B. H., Shen, T., Lee, S. Y., Park, H. J., Park, S.-C., Rhee, M. H. and Cho, J. Y. (2008) Surfactin blocks NO production in lipopolysaccharide-activated macrophages by inhibiting $NF-{\kappa}B$ activation. J. Microbiol. Biotechnol. 18, 1984-1989.
  7. Byeon, S. E., Yu, T., Yang, Y., Lee, Y. G., Kim, J. H., Oh, J., Jeong, H. Y., Hong, S., Yoo, B. C., Cho, W. J., Hong, S. and Cho, J. Y. (2013) Hydroquinone regulates hemeoxygenase-1 expression via modulation of Src kinase activity through thiolation of cysteine residues. Free Radic. Biol. Med. 57, 105-118. https://doi.org/10.1016/j.freeradbiomed.2012.12.013
  8. Cho, B. O., Ryu, H. W., So, Y., Lee, C. W., Jin, C. H., Yook, H. S., Jeong, Y. W., Park, J. C. and Jeong, I. Y. (2014) Anti-Inflammatory Effect of Mangostenone F in Lipopolysaccharide-Stimulated RAW264.7 Macrophages by Suppressing $NF-{\kappa}B$ and MAPK Activation. Biomol. Ther. (Seoul) 22, 288-294. https://doi.org/10.4062/biomolther.2014.052
  9. Chow, J. C., Young, D. W., Golenbock, D. T., Christ, W. J. and Gusovsky, F. (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem. 274, 10689-10692. https://doi.org/10.1074/jbc.274.16.10689
  10. Dincer, S., Cetin, K. T., Onay-Besikci, A. and Olgen, S. (2013) Synthesis, biological evaluation and docking studies of new pyrrolo [2, 3-d] pyrimidine derivatives as Src family-selective tyrosine kinase inhibitors. J. Enzyme Inhib. Med. Chem. 28, 1080-1087. https://doi.org/10.3109/14756366.2012.715288
  11. Elinav, E., Nowarski, R., Thaiss, C. A., Hu, B., Jin, C. and Flavell, R. A. (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer 13, 759-771. https://doi.org/10.1038/nrc3611
  12. Jeon, B. R., Kim, S. J., Hong, S. B., Park, H. J., Cho, J. Y. and Rhee, M. H. (2015) The inhibitory mechanism of crude saponin fraction from Korean Red Ginseng in collagen-induced platelet aggregation. J. Ginseng Res. 39, 279-285. https://doi.org/10.1016/j.jgr.2015.02.001
  13. Kim, K. H., Kim, T. S., Lee, J. G., Park, J. K., Yang, M., Kim, J. M., Jo, E. K. and Yuk, J. M. (2014a) Characterization of Proinflammatory Responses and Innate Signaling Activation in Macrophages Infected with Mycobacterium scrofulaceum. Immune Netw. 14, 307-320. https://doi.org/10.4110/in.2014.14.6.307
  14. Kim, M. Y., Yoo, B. C. and Cho, J. Y. (2014b) Ginsenoside-Rp1-induced apolipoprotein A-1 expression in the LoVo human colon cancer cell line. J. Ginseng Res. 38, 251-255. https://doi.org/10.1016/j.jgr.2014.06.003
  15. Kim, Y., Jeong, E. J., Han Lee, I. S., Kim, M. Y. and Cho, J. Y. (2016) (E)-3-(3-methoxyphenyl)-1-(2-pyrrolyl)-2-propenone displays suppression of inflammatory responses via inhibition of Src, Syk, and $NF-{\kappa}B$. Korean J. Physiol. Pharmacol. 20, 91-99. https://doi.org/10.4196/kjpp.2016.20.1.91
  16. Kishimoto, K., Matsumoto, K. and Ninomiya-Tsuji, J. (2000) TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation loop. J. Biol. Chem. 275, 7359-7364. https://doi.org/10.1074/jbc.275.10.7359
  17. Lee, H. S., Lee, G. S., Kim, S. H., Kim, H. K., Suk, D. H. and Lee, D. S. (2014a) Anti-oxidizing effect of the dichloromethane and hexane fractions from Orostachys japonicus in LPS-stimulated RAW 264.7 cells via upregulation of Nrf2 expression and activation of MAPK signaling pathway. BMB Rep. 47, 98-103. https://doi.org/10.5483/BMBRep.2014.47.2.088
  18. Lee, I. S. H., Jeoung, E. J. and Lee, C. K. (2013) Synthesis and NMR Studies of (E)-1-Aryl-3-(2-pyrrolyl)-2-propenones and (E)-3-Aryl-1-(2-pyrrolyl)-2-propenones. Bull. Korean Chem. Soc. 34, 936-942. https://doi.org/10.5012/bkcs.2013.34.3.936
  19. Lee, J.-H., Jung, H. S., Giang, P. M., Jin, X., Lee, S., Son, P. T., Lee, D., Hong, Y.-S., Lee, K. and Lee, J. J. (2006) Blockade of nuclear $factor-{\kappa}B$ signaling pathway and anti-inflammatory activity of cardamomin, a chalcone analog from Alpinia conchigera. J. Pharmacol. Exp. Ther. 316, 271-278.
  20. Lee, N., Jung, Y. S., Lee, H. Y., Kang, N., Park, Y. J., Hwang, J. S., Bahk, Y. Y., Koo, J. and Bae, Y. S. (2014b) Mouse neutrophils express functional umami taste receptor T1R1/T1R3. BMB Rep. 47, 649-654. https://doi.org/10.5483/BMBRep.2014.47.11.185
  21. Lee, Y. J., Han, J. Y., Lee, C. G., Heo, K., Park, S. I., Park, Y. S., Kim, J. S., Yang, K. M., Lee, K. J., Kim, T. H., Rhee, M. H. and Kim, S. D. (2014c) Korean Red Ginseng saponin fraction modulates radiation effects on lipopolysaccharide-stimulated nitric oxide production in RAW264.7 macrophage cells. J. Ginseng Res. 38, 208-214. https://doi.org/10.1016/j.jgr.2014.02.001
  22. Lumeng, C. N. and Saltiel, A. R. (2011) Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121, 2111-2117. https://doi.org/10.1172/JCI57132
  23. Nahid, M. A., Satoh, M. and Chan, E. K. (2011) MicroRNA in TLR signaling and endotoxin tolerance. Cell. Mol. Immunol. 8, 388-403. https://doi.org/10.1038/cmi.2011.26
  24. O'Neill, L. A. (2002) Signal transduction pathways activated by the IL-1 receptor/toll-like receptor superfamily. Curr. Top. Microbiol. Immunol. 270, 47-61.
  25. Pauwels, R., Balzarini, J., Baba, M., Snoeck, R., Schols, D., Herdewijn, P., Desmyter, J. and De Clercq, E. (1988) Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J. Virol. Methods 20, 309-321. https://doi.org/10.1016/0166-0934(88)90134-6
  26. Rittirsch, D., Flierl, M. A. and Ward, P. A. (2008) Harmful molecular mechanisms in sepsis. Nat. Rev. Immunol. 8, 776-787. https://doi.org/10.1038/nri2402
  27. Screaton, G., Mongkolsapaya, J., Yacoub, S. and Roberts, C. (2015) New insights into the immunopathology and control of dengue virus infection. Nat. Rev. Immunol. 15, 745-759. https://doi.org/10.1038/nri3916
  28. Shao, H. J., Lou, Z., Jeong, J. B., Kim, K. J., Lee, J. and Lee, S. H. (2015) Tolfenamic Acid Suppresses Inflammatory Stimuli-Mediated Activation of $NF-{\kappa}B$ Signaling. Biomol. Ther. (Seoul) 23, 39-44. https://doi.org/10.4062/biomolther.2014.088
  29. Tran, V. G., Cho, H. R. and Kwon, B. (2014) IL-33 Priming Enhances Peritoneal Macrophage Activity in Response to Candida albicans. Immune Netw. 14, 201-206. https://doi.org/10.4110/in.2014.14.4.201
  30. Yang, K.-J., Shin, S., Piao, L., Shin, E., Li, Y., Park, K. A., Byun, H. S., Won, M., Hong, J., Kweon, G. R., Hur, G. M., Seok, J. H., Chun, T., Brazil, D. P., Hemmings, B. A. and Park, J. (2008) Regulation of 3-phosphoinositide-dependent protein kinase-1 (PDK1) by Src involves tyrosine phosphorylation of PDK1 and Src homology 2 domain binding. J. Biol. Chem. 283, 1480-1491. https://doi.org/10.1074/jbc.M706361200
  31. Yang, W. S., Lee, J., Kim, T. W., Kim, J. H., Lee, S., Rhee, M. H., Hong, S. and Cho, J. Y. (2012) $Src/NF-{\kappa}B$-targeted inhibition of LPS-induced macrophage activation and dextran sodium sulphate-induced colitis by Archidendron clypearia methanol extract. J. Ethnopharmacol. 142, 287-293. https://doi.org/10.1016/j.jep.2012.04.026
  32. Yang, Y., Yang, W. S., Yu, T., Yi, Y.-S., Park, J. G., Jeong, D., Kim, J. H., Oh, J. S., Yoon, K., Kim, J.-H. and Cho, J. Y. (2014) Novel anti-inflammatory function of NSC95397 by the suppression of multiple kinases. Biochem. Pharmacol. 88, 201-215.
  33. Yu, T., Li, Y. J., Bian, A. H., Zuo, H. B., Zhu, T. W., Ji, S. X., Kong, F., Yin de, Q., Wang, C. B., Wang, Z. F., Wang, H. Q., Yang, Y., Yoo, B. C. and Cho, J. Y. (2014) The regulatory role of activating transcription factor 2 in inflammation. Mediators Inflamm. 2014, 950472.

Cited by

  1. Pyrrole and Fused Pyrrole Compounds with Bioactivity against Inflammatory Mediators vol.22, pp.3, 2017, https://doi.org/10.3390/molecules22030461
  2. The skin protective effects of compound K, a metabolite of ginsenoside Rb1 from Panax ginseng 2017, https://doi.org/10.1016/j.jgr.2017.03.007
  3. JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38 vol.21, pp.3, 2017, https://doi.org/10.4196/kjpp.2017.21.3.345
  4. Hydroquinone suppresses IFN-β expression by targeting AKT/IRF3 pathway vol.21, pp.5, 2017, https://doi.org/10.4196/kjpp.2017.21.5.547
  5. Anti-Inflammatory Effect of Piper attenuatum Methanol Extract in LPS-Stimulated Inflammatory Responses vol.2017, 2017, https://doi.org/10.1155/2017/4606459
  6. Novel indolyl-chalcone derivatives inhibit A549 lung cancer cell growth through activating Nrf-2/HO-1 and inducing apoptosis in vitro and in vivo vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-04411-3
  7. TANK-binding kinase 1 and Janus kinase 2 play important roles in the regulation of mitogen-activated protein kinase phosphatase-1 expression after toll-like receptor 4 activation vol.233, pp.11, 2018, https://doi.org/10.1002/jcp.26787