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DETERMINATION OF THE FRICKE FAMILIES

Ick Sun Eum and Dong Hwa Shin

Abstract. For a positive integer N divisible by 4, let O1
N
(Q) be the ring

of weakly holomorphic modular functions for the congruence subgroup
Γ1(N) with rational Fourier coefficients. We present explicit generators
of the ring O

1
N
(Q) over Q in terms of both Fricke functions and Siegel

functions, from which we are able to classify all Fricke families of such
level N .

1. Introduction

The group SL2(R) acts on the complex upper half-plane H = {τ ∈ C | Im(τ)
> 0} by fractional linear transformations, that is,

[

a b
c d

]

(τ) =
aτ + b

cτ + d
.

For a positive integer N , let FN be the field of meromorphic modular functions
for the principal congruence subgroup Γ(N) = {γ ∈ SL2(Z) | γ ≡ I2 (mod N)}
of SL2(Z) whose Fourier coefficients belong to the Nth cyclotomic field Q(ζN ),
where ζN = e2πi/N . It is well known that F1 is generated over Q by the elliptic
modular function j(τ), and FN is a Galois extension of F1 with

(1) Gal(FN/F1) ≃ GL2(Z/NZ)/{±I2}
(see §2). For N ≥ 2, let

VN = {v ∈ Q
2 | v has primitive denominator N}.

We call a family {hv(τ)}v∈VN
of functions in FN a Fricke family of level N , if

it satisfies the following three conditions:

(F1) Each hv(τ) is weakly holomorphic (that is, holomorphic on H).
(F2) hv(τ) depends only on ±v (mod Z

2).
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(F3) hv(τ)
α = htαv(τ) for all α ∈ GL2(Z/NZ)/{±I2}, where tα means the

transpose of α.

There are two important kinds of Fricke families {fv(τ)}v and {gv(τ)12N}v,
one consisting of Fricke functions and the other consisting of 12Nth powers of
Siegel functions (see §3). They are building blocks of fields of modular functions
and groups of modular units ([7, Chapter 2] and [8, Chapter 6]). Since their
special values at imaginary quadratic arguments generate class fields over the
corresponding imaginary quadratic fields (see [3], [4] and [8, Chapter 10]), it
would be meaningful by themselves and also worth of investigating the structure
of Fricke families as a ring.

As far as we understand, there is no known result on constructing all such
families. In this paper, we shall first classify all Fricke families of level N , when
N ≡ 0 (mod 4) (Theorems 4.3, 6.2 and Corollary 6.4). Furthermore, if we
constrain the condition (F1) to

(F1′) every hv(τ) is holomorphic on H except for the set {γ(ζ3), γ(ζ4) | γ ∈
SL2(Z)},

then we can also determine all weak families {hv(τ)}v∈VN
of functions in FN

satisfying (F1′), (F2) and (F3) for arbitrary level N ≥ 2 (Theorem 7.4 and
Remark 7.5).

2. Galois actions on functions

In this section, we shall briefly describe the actions of the group

GL2(Z/NZ)/{±I2} ≃ Gal(FN/F1)

on the field FN .
For a positive integer N , the group GL2(Z/NZ)/{±I2} has a unique decom-

position

GN · SL2(Z/NZ)/{±I2} with GN =

{[

1 0
0 d

]

| d ∈ (Z/NZ)×
}

.

This group acts on the field FN as follows ([9, §6.1–6.2]): Let

h(τ) =
∑

n≫−∞

cnq
n/N ∈ FN (cn ∈ Q(ζN ), q = e2πiτ ).

(A1) The matrix [ 1 0
0 d ] ∈ GN acts on h(τ) as

h(τ)[
1 0
0 d ] =

∑

n≫−∞

cσd

n qn/N ,

where σd is the automorphism of Q(ζN ) given by ζσd

N = ζdN .
(A2) The matrix γ ∈ SL2(Z/NZ)/{±I2} acts on h(τ) as

h(τ)γ = (h ◦ γ̃)(τ),
where γ̃ is any preimage of the reduction SL2(Z) → SL2(Z/NZ)/{±I2}
considered as a fractional linear transformation.
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Lemma 2.1. Let {hv(τ)}v∈VN
be a Fricke family of level N ≥ 2. Then

GL2(Z/NZ)/{±I2} acts on {hv(τ)}v transitively.

Proof. Note by (F3) that GL2(Z/NZ)/{±I2} acts on the family {hv(τ)}v. Let
v =

[

a/N

b/N

]

∈ VN so that gcd(a, b) is relatively prime to N . If we take any

α =
[

a b
c d

]

∈ M2(Z) such that det(α) is relatively prime to N , then we see by
(F3) that

h[
1/N
0

](τ)α = h
tα

[
1/N
0

](τ) = h[
a/N

b/N

](τ) = hv(τ).

This implies that GL2(Z/NZ)/{±I2} acts on {hv(τ)}v transitively. �

Remark 2.2. Roughly speaking, this family {hv(τ)}v is completely determined
by its component h[

1/N
0

](τ).

3. Fricke and Siegel functions

For a lattice Λ in C, we let

g2(Λ) = 60
∑

λ∈Λ\{0}

1

λ4
, g3(Λ) = 140

∑

λ∈Λ\{0}

1

λ6
and ∆(Λ) = g2(Λ)

3−27g3(Λ)
2.

The elliptic modular function j(τ) is defined by

(2) j(τ) = 1728
g2(τ)

3

∆(τ)
= 1728

(

1 + 27
g3(τ)

2

∆(τ)

)

(τ ∈ H),

where g2(τ) = g2([τ, 1]), g3(τ) = g3([τ, 1]) and ∆(τ) = ∆([τ, 1]). This gener-
ates the ring of weakly holomorphic functions in F1 over Q ([8, Theorem 2 in
Chapter 5]).

The Weierstrass ℘-function relative to Λ is given by

℘(z; Λ) =
1

z2
+

∑

λ∈Λ\{0}

(

1

(z − λ)2
− 1

λ2

)

(z ∈ C).

For each v = [ v1v2 ] ∈ Q2 \ Z2, we define the Fricke function fv(τ) by

(3) fv(τ) = −2735
g2(τ)g3(τ)

∆(τ)
℘v(τ) (τ ∈ H),

where ℘v(τ) = ℘(v1τ + v2; [τ, 1]).
By the Weierstrass σ-function relative to Λ, we mean the infinite product

σ(z; Λ) = z
∏

λ∈Λ\{0}

(

1− z

λ

)

ez/λ+(1/2)(z/λ)2 (z ∈ C).

Taking logarithmic derivative, we achieve the Weierstrass ζ-function as

ζ(z; Λ) =
σ′(z; Λ)

σ(z; Λ)
=

1

z
+

∑

λ∈Λ\{0}

(

1

z − λ
+

1

λ
+

z

λ2

)

(z ∈ C).
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Since ζ′(z; Λ) = −℘(z; Λ) is periodic with respect to Λ, for every λ ∈ Λ there
is a constant η(λ; Λ) which satisfies

ζ(z + λ; Λ)− ζ(z; Λ) = η(λ; Λ) (z ∈ C).

For any v = [ v1v2 ] ∈ Q2 \ Z2, we then define the Siegel function gv(τ) by

(4) gv(τ) = e−(v1η(τ ;[τ,1])+v2η(1;[τ,1]))(v1τ+v2)/2σ(v1τ + v2; [τ, 1])η(τ)
2 (τ ∈ H),

where

η(τ) =
√
2πζ8q

1/24
∞
∏

n=1

(1 − qn) (τ ∈ H)

is the Dedekind η-function which is a 24th root of ∆(τ) ([8, Theorem 5 in
Chapter 18]). By using the q-product expansion of the Weierstrass σ-function,
we get the expression

gv(τ) = − eπiv2(v1−1)q(1/2)B2(v1)(1− qv1e2πiv2)
∞
∏

n=1

(1− qn+v1e2πiv2)(1− qn−v1e−2πiv2),

where B2(x) = x2 − x + 1/6 is the second Bernoulli polynomial ([8, Chapter
19, §2]). Observe that gv(τ) has neither zeros nor poles on H.

Proposition 3.1. If N ≥ 2, then {fv(τ)}v∈VN
and {gv(τ)12N}v∈VN

are Fricke

families of level N .

Proof. See [8, Chapter 6, §2–3] and [7, Proposition 1.3 in Chapter 2]. �

Remark 3.2. We call a function h(τ) in FN a modular unit of level N ≥ 1, if
both h(τ) and h(τ)−1 are integral over Q[j(τ)]. As is well known, h(τ) is a
modular unit if and only if it has neither zeros nor poles on H ([7, p. 36] or [2,
Proposition 2.3]). Thus gv(τ)

12N is a modular unit of level N for every v ∈ VN

with N ≥ 2. Moreover, gv(τ) is a modular unit of level 12N2 ([7, Theorems
5.2 and 5.3 in Chapter 3]).

For later use, we need the following lemmas.

Lemma 3.3. Let u,v ∈ Q2 \ Z2.

(i) We have the assertion that fu(τ)=fv(τ) if and only if u≡±v(mod Z2).
(ii) If u 6≡ ±v (mod Z2), then we get the relation

(fu(τ) − fv(τ))
6 = 21236j(τ)2(j(τ) − 1728)3

gu+v(τ)
6gu−v(τ)

6

gu(τ)12gv(τ)12
.

Proof. (i) See [1, Lemma 10.4] and definition (3).
(ii) See [8, Theorem 2 in Chapter 18] and definitions (2), (3) and (4). �
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Remark 3.4. ForN≥2, let u,v,u′,v′∈(1/N)Z2\Z2 such that u 6≡ ±v(mod Z2)
and u′ 6≡ ±v′ (mod Z2). Then, the function

fu(τ)− fv(τ)

fu′(τ)− fv′(τ)
=

℘u(τ)− ℘v(τ)

℘u′(τ)− ℘v′(τ)

in FN has neither zeros nor poles on H by Lemma 3.3(ii). Thus it is a modular
unit of level N by Remark 3.2, called a Weierstrass unit of level N .

Lemma 3.5. Let v ∈ Q2 \ Z2.

(i) We have g−v(τ) = −gv(τ).
(ii) If s=[ s1s2 ]∈Z2, then we get gv+s(τ)=(−1)s1s2+s1+s2e−πi(s1v2−s2v1)gv(τ).
(iii) For each γ ∈ SL2(Z), we obtain (gv ◦ γ)(τ) = ζgtγv(τ) for some 12th

root of unity ζ depending only on γ.

Proof. See [6, Proposition 2.4]. �

4. Rings of weakly holomorphic functions

For an integer N ≥ 2, we denote by FrN the set of all Fricke families of level
N . Then, FrN becomes a ring under the operations

(5)
{hv(τ)}v + {kv(τ)}v = {(hv + kv)(τ)}v,
{hv(τ)}v · {kv(τ)}v = {(hvkv)(τ)}v.

For a positive integer N , let F1
N (Q) be the field of meromorphic modular

functions for the congruence subgroup

Γ1(N) =

{

γ ∈ SL2(Z) | γ ≡
[

1 0
∗ 1

]

(mod N)

}

with rational Fourier coefficients. Further, we let O1
N (Q) its subring consisting

of weakly holomorphic functions.

Lemma 4.1. Let {hv(τ)}v ∈ FrN with N ≥ 2. Then, h[
1/N
0

](τ) belongs to

O1
N (Q).

Proof. For any γ =
[

a b
c d

]

∈ Γ1(N), we see that

(h[
1/N
0

] ◦ γ)(τ) = h[
1/N
0

](τ)γ by (A2)

= h
tγ

[
1/N
0

](τ) by (F3)

= h[
a/N

b/N

](τ)

= h[
1/N
0

](τ) by the fact a ≡ 1, b ≡ 0 (mod N) and (F2).

Thus h[
1/N
0

](τ) is modular for Γ1(N).
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Now, let β = [ 1 0
0 d ] ∈ GN . We get by (F3) and (F2) that

h[
1/N
0

](τ)β = h
tβ

[
1/N
0

](τ) = h[
1/N
0

](τ),

which shows that h[
1/N
0

](τ) has rational Fourier coefficients by (A1).

Moreover, since h[
1/N
0

](τ) is weakly holomorphic by (F1), it belongs to

O1
N (Q). �

Hence we obtain by Lemma 4.1 a ring homomorphism

(6)
φN : FrN → O1

N (Q)
{hv(τ)}v 7→ h[

1/N
0

](τ).

Lemma 4.2. For N ≥ 2, let a and b be a pair of integers such that gcd(a, b)
is relatively prime to N . Let γ =

[

a b
c d

]

and γ′ =
[

a b
c′ d′

]

be matrices in M2(Z)

such that det(γ) ≡ det(γ′) ≡ 1 (mod N). Then, there is a matrix δ ∈ Γ1(N)
satisfying δγ ≡ γ′ (mod N).

Proof. Take δ =
[

1 0
c′d−cd′ 1

]

∈ Γ1(N). One can then show that

δγ≡
[

a b
c′ det(γ) + c(− det(γ′) + 1) d′ det(γ) + d(− det(γ′) + 1)

]

≡ γ′ (mod N)

due to the fact det(γ) ≡ det(γ′) ≡ 1 (mod N). �

Theorem 4.3. If N ≥ 2, then two rings FrN and O1
N (Q) are isomorphic via

the map φN stated in (6).

Proof. Let {hv(τ)}v ∈ ker(φ), and so φN ({hv(τ)}v) = h[
1/N
0

](τ) = 0. Then

we attain by Lemma 2.1 that hv(τ) = 0 for all v ∈ VN . This shows that φN is
one-to-one.

Now, let h(τ) ∈ O1
N (Q). For each v =

[

a/N

b/N

]

∈ VN , we take any γ =
[

a b
c d

]

∈ M2(Z) such that det(γ) ≡ 1 (mod N), and set hv(τ) = h(τ)γ . We
first claim that hv(τ) is well-defined, independent of the choice of γ. Indeed, if
γ′ =

[

a b
c′ d′

]

is another matrix in M2(Z) such that det(γ′) ≡ 1 (mod N), then
we see that

h(τ)γ
′

= h(τ)δγ for some δ ∈ Γ1(N) by Lemma 4.2 and (1)

= h(τ)γ because h(τ) is modular for Γ1(N).

Since h(τ) is weakly holomorphic, so is hv(τ) = h(τ)γ by (A2). Furthermore,
hv(τ) depends only on±v (mod Z2) by (1). Let α=[ x y

z w ]∈GL2(Z/NZ)/{±I2}.
We then derive by considering γ =

[

a b
c d

]

as an element of SL2(Z/NZ)/{±I2}
that

hv(τ)
α =

(

h(τ)

[
a b
c d

])[x y
z w ]
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= h(τ)

[
ax+bz ay+bw
cx+dz cy+dw

]

=

(

h(τ)

[
1 0
0 det(α)

])
[

ax+bz ay+bw

det(α)−1(cx+dz) det(α)−1(cy+dw)

]

= h(τ)

[
ax+bz ay+bw

det(α)−1(cx+dz) det(α)−1(cy+dw)

]

since h(τ) has rational Fourier coefficients

= h[
(ax+bz)/N
(ay+bw)/N

](τ)

because
[

ax+bz ay+bw

det(α)−1(cx+dz) det(α)−1(cy+dw)

]

∈ SL2(Z/NZ)/{±I2}
= h

[x z
y w ]

[
a/N

b/N

](τ)

= htαv(τ).

Thus the family {hv(τ)}v satisfies (F3). Lastly, since

φN ({hv(τ)}v) = h[
1/N
0

](τ),

φN is surjective.
Therefore, we conclude that FrN and O1

N (Q) are isomorphic via φN . �

5. Conjugate subgroups of SL2(R)

For a positive integer N , let

Γ1(N) =

{

γ ∈ SL2(Z) | γ ≡
[

1 ∗
0 1

]

(mod N)

}

and ωN =

[

1/
√
N 0

0
√
N

]

.

Then, we see from the observation

ωN

[

a b
c d

]

ω−1
N =

[

a b/N
Nc d

]

for all

[

a b
c d

]

∈ SL2(R)

that Γ1(N) and Γ1(N) are conjugate in SL2(R), namely,

(7) ωNΓ1(N)ω−1
N = Γ1(N).

Let F1,N(Q) be the field of meromorphic modular functions for Γ1(N) with
rational Fourier coefficients. One can readily check that the relation (7) gives
rise to an isomorphism

(8)
F1,N(Q)

∼→ F1
N(Q)

h(τ) =
∑

n≫−∞
cnq

n 7→ (h ◦ ωN )(τ) = h(τ/N) =
∑

n≫−∞
cnq

n/N

with inverse map f(τ) 7→ (f ◦ ω−1
N )(τ) = f(Nτ). Furthermore, let O1,N (Q) be

the subring of F1,N(Q) consisting of weakly holomorphic functions. Since the
map in (8) preserves weakly holomorphicity, it induces an isomorphism

(9) O1,N(Q)
∼→ O1

N (Q).
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Let X1(4) be the modular curve corresponding to the congruence subgroup
Γ1(4). It is well known that X1(4) has genus 0 with three inequivalent cusps
0, 1/2 and i∞ ([5, p. 131]). Moreover, the function

g1,4(τ) =





g[ 1/2
0

](4τ)

g[ 1/4
0

](4τ)





8

= q−1(1 + q)8
∞
∏

n=1

(

(1− q4n+2)(1− q4n−2)

(1− q4n+1)(1− q4n−1)

)8

generates the function field C(X1(4)) of X1(4) over C, having values 16, 0 and
∞ at the cusps 0, 1/2 and i∞, respectively ([5, Theorem 3(ii)] and [6, Tables 2
and 3]). Since g1,4(τ) has rational Fourier coefficients, we deduce by [5, Lemma
4.1]

(10) F1,4(Q) = Q(g1,4(τ)).

Lemma 5.1. Let c ∈ C. Then, (g1,4(τ) − c) has neither zeros nor poles on H

if and only if c ∈ {0, 16}.

Proof. See [2, (4)]. �

Theorem 5.2. We get the following structures.

(i) O1,4(Q) = Q[g1,4(τ), g1,4(τ)
−1, (g1,4(τ) − 16)−1].

(ii) O1
4(Q) = Q[g14(τ), g

1
4(τ)

−1, (g14(τ) − 16)−1], where g14(τ) = g1,4(τ/4) =
g[ 1/4

0

](τ)−8g[ 1/2
0

](τ)8.

Proof. (i) Since g1,4(τ) and (g1,4(τ) − 16) are modular units in F1,4(Q) by
Lemma 5.1 and (10), we obtain the inclusion O1,4(Q) ⊇ Q[g1,4(τ), g1,4(τ)

−1,
(g1,4(τ) − 16)−1].

Conversely, let h(τ) ∈ O1,4(Q). By (10), we can express h(τ) as h(τ) =
A(g1,4(τ))/B(g1,4(τ)) for some polynomials A(x), B(x) ∈ Q[x] which are rela-

tively prime. Suppose that B(x) has a zero c ∈ Q not equal to 0 or 16. We
see by Lemma 5.1 that g1,4(τ0) − c = 0 for some τ0 ∈ H, from which we have

B(g1,4(τ0)) = 0. But, since A(x) is not divisible by (x− c) in Q[x], we achieve
A(g1,4(τ0)) 6= 0. This contradicts that h(τ) is weakly holomorphic. Thus
B(x) has no zeros other than 0 and 16, which implies the converse inclusion
O1,4(Q) ⊆ Q[g1,4(τ), g1,4(τ)

−1, (g1,4(τ) − 16)−1].
(ii) It follows immediately from (i) and the isomorphism given in (9). �

6. Generators for N ≡ 0 (mod 4)

Now, we are ready to present explicit generators of the ring O1
N (Q) over Q,

when N ≡ 0 (mod 4). This amounts to classifying all Fricke families of such
level N by Theorem 4.3.

Proposition 6.1. If N ≥ 2, then we obtain F1
N(Q) = F1(f[ 1/N

0

](τ)).
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Proof. We first recall that FN is a Galois extension of F1 with

Gal(FN/F1) ≃ GL2(Z/N(Z)/{±I2} ≃ GN · SL2(Z/NZ)/{±I2}.
Observe by (A1) and (A2) that FN is a Galois extension of F1

N (Q) with

Gal(FN/F1
N(Q)) ≃ GN ·

{

γ ∈ SL2(Z/NZ)/{±I2} | γ ≡ ±
[

1 0
* 1

]

(mod N)

}

.

Let F = F1(f[ 1/N
0

](τ)). Since {fv(τ)}v∈VN
∈ FrN by Proposition 3.1, we have

the inclusion F ⊆ F1
N (Q) by Lemma 4.1. Suppose that α = βγ with β ∈ GN

and γ =
[

a b
c d

]

∈ SL2(Z/NZ)/{±I2} leaves f[ 1/N
0

](τ) fixed. We then derive

that

f[ 1/N
0

](τ) = f[ 1/N
0

](τ)α

= (f[ 1/N
0

](τ)β)γ

= f[ 1/N
0

](τ)γ because f[ 1/N
0

](τ) has rational Fourier coefficients

= f
tγ

[
1/N
0

](τ) by (F2) and (F3) for {fv(τ)}v

= f[ a/N

b/N

](τ).

Thus we get b ≡ 0 (mod N) and a ≡ d ≡ ±1 (mod N) by Lemma 3.3(i) and
the fact γ ∈ SL2(Z/NZ)/{±I2}. This yields F ⊇ F1

N (Q) by Galois theory.
Therefore, we conclude F = F1(f[ 1/N

0

](τ)) = F1
N (Q). �

When N ≥ 8 and N ≡ 0 (mod 4), we consider a function

f1
N(τ) =

f[ 1/N
0

](τ) − f[ 1/2
0

](τ)

f[ 1/4
0

](τ) − f[ 1/2
0

](τ)
(τ ∈ H).

It is a modular unit belonging to O1
N (Q) by Proposition 3.1, Remark 3.4 and

Lemma 4.1.

Theorem 6.2. If N ≥ 8 and N ≡ 0 (mod 4), then we attain

O1
N (Q) = O1

4(Q)[f1
N(τ)] = Q[g14(τ), g

1
4(τ)

−1, (g14(τ) − 16)−1, f1
N(τ)].

Proof. It is obvious that O1
N (Q) ⊇ O1

4(Q)[f1
N (τ)].

As for the converse inclusion, let h(τ) ∈ O1
N (Q). Note by Proposition 6.1

and Lemma 4.1 that

F1
N(Q) = F1(f[ 1/N

0

](τ)) = F1
4 (Q)(f1

N (τ)).

So, we can express h = h(τ) as

(11) h = c0 + c1f + · · ·+ cd−1f
d−1,
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where f = f1
N(τ), d = [F1

N(Q) : F1
4 (Q)] and c0, c1, . . . , cd−1 ∈ F1

4 (Q). Multi-
plying both sides of (11) by 1, f, . . . , fd−1, respectively, we have a linear system
(with unknowns c0, c1, . . . , cd−1)











1 f · · · fd−1

f f2 · · · fd

...
...

. . .
...

fd−1 fd · · · f2d−2





















c0
c1
...

cd−1











=











h
fh
...

fd−1h











.

By taking the trace Tr = TrF1
N
(Q)/F1

4
(Q) on both sides, we obtain

T











c0
c1
...

cd−1











=











Tr(h)
Tr(fh)

...
Tr(fd−1h)











with T =











Tr(1) Tr(f) · · · Tr(fd−1)
Tr(f) Tr(f2) · · · Tr(fd)

...
...

. . .
...

Tr(fd−1) Tr(fd) · · · Tr(f2d−2)











.

Since every Tr(∗), appeared in the above expression, lies in O1
4(Q), we get

(12) c0, c1, . . . , cd−1 ∈ det(T )−1O1
4(Q).

If we let f1, f2, . . . , fd be all the Galois conjugates of f over F1
4 (Q), then we

derive that

det(T ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑d

k=1 f
0
k

∑d

k=1 f
1
k · · · ∑d

k=1 f
d−1
k

∑d

k=1 f
1
k

∑d

k=1 f
2
k · · · ∑d

k=1 f
d
k

...
...

. . .
...

∑d

k=1 f
d−1
k

∑d

k=1 f
d
k · · · ∑d

k=1 f
2d−2
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

f0
1 f0

2 · · · f0
d

f1
1 f1

2 · · · f1
d

...
...

. . .
...

fd−1
1 fd−1

2 · · · fd−1
d

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f0
1 f1

1 · · · fd−1
1

f0
2 f1

2 · · · fd−1
2

...
...

. . .
...

f0
d f1

d · · · fd−1
d

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∏

1≤m<n≤d

(fm − fn)
2 by the Vandermonde determinant formula.

On the other hand, since f[ 1/2
0

](τ) and f[ 1/4
0

](τ) belong to F1
4 (Q) by Lemma

4.1, each (fm − fn) is of the form

f[ a/N

b/N

](τ) − f[ 1/2
0

](τ)

f[ 1/4
0

](τ) − f[ 1/2
0

](τ)
−

f[ c/N

d/N

](τ)− f[ 1/2
0

](τ)

f[ 1/4
0

](τ) − f[ 1/2
0

](τ)
=

f[ a/N

b/N

](τ)− f[ c/N

d/N

](τ)

f[ 1/4
0

](τ) − f[ 1/2
0

](τ)

for some
[

a/N

b/N

]

,
[

c/N

d/N

]

∈ VN such that
[

a/N

b/N

]

6≡ ±
[

c/N

d/N

]

(mod Z2) by Lemma

3.3(i). Thus det(T ) is a modular unit in O1
4(Q) by Remark 3.4, from which it

follows by (11) and (12) that h(τ) ∈ O1
4(Q)[f1

N (τ)]. Therefore we establish the
inclusion O1

N (Q) ⊆ O1
4(Q)[f1

N (τ)], as desired. �
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Question 6.3. Whenever N 6≡ 0 (mod 4), determine whether the ring O1
N (Q)

is also generated by both Fricke and Siegel functions, or not.

Corollary 6.4. Let N ≥ 8 and N ≡ 0 (mod 4). For each v =
[

a/N

b/N

]

∈ VN ,

let

rv(τ) =

(

g(N/2)v(τ)

g(N/4)v(τ)

)8

and sv(τ) =
fv(τ) − f(N/2)v(τ)

f(N/4)v(τ)− f(N/2)v(τ)
.

Then, a family {hv(τ)}v∈VN
of functions in FN is a Fricke family of level N

if and only if there is a polynomial P (x, y, z, w) ∈ Q[x, y, z, w] for which

hv(τ) = P (rv(τ), rv(τ)
−1, (rv(τ) − 16)−1, sv(τ)) for all v ∈ VN .

Proof. For each v =
[

a/N

b/N

]

∈ VN , we take any γ =
[

a b
c d

]

∈ M2(Z) and

γ̃ ∈ SL2(Z) such that det(γ) ≡ 1 (mod N) and γ̃ ≡ ±γ (mod N). Note that
tγ̃u ≡ ±tγu (mod Z2) for all u ∈ (1/N)Z2. We then see by (A2) and Lemma
3.5 that

g14(τ)
γ = (g14 ◦ γ̃)(τ) =





g
tγ̃

[
1/2
0

](τ)

g
tγ̃

[
1/4
0

](τ)





8

=





g
tγ

[
1/2
0

](τ)

g
tγ

[
1/4
0

](τ)





8

=







g[ a/2
b/2

](τ)

g[ a/4
b/4

](τ)







8

= rv(τ).

Furthermore, we get by Proposition 4.1 that

f1
N (τ)γ =

f
tγ

[
1/N
0

](τ) − f
tγ

[
1/2
0

](τ)

f
tγ

[
1/4
0

](τ) − f
tγ

[
1/2
0

](τ)
=

f[ a/N

b/N

](τ)− f[ a/2
b/2

](τ)

f[ a/4
b/4

](τ) − f[ a/2
b/2

](τ)
= sv(τ).

Now, the corollary follows from Theorems 4.3 (with its proof) and 6.2. �

7. Weak Fricke families

Let H′ = H \ {γ(ζ3), γ(ζ4) | γ ∈ SL2(Z)}. For a positive integer N , we let

O1
N

′
(Q) be the ring of functions in F1

N (Q) which are holomorphic on H′.

Lemma 7.1. j(τ) gives to rise a bijection j(τ) : SL2(Z)\H → C such that

j(ζ3) = 0 and j(ζ4) = 1728.

Proof. See [8, Theorem 4 in Chapter 3]. �

Theorem 7.2. We have O1
1
′
(Q) = Q[j(τ), j(τ)−1, (j(τ) − 1728)−1].
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Proof. By Lemma 7.1, we get the inclusion O1
1
′
(Q) ⊇ Q[j(τ), j(τ)−1, (j(τ) −

1728)−1].

Now, let h(τ) ∈ O1
1
′
(Q). Since F1

1 (Q) = F1 = Q(j(τ)), we may write
h(τ) = A(j(τ))/B(j(τ)) for some polynomials A(x), B(x) ∈ Q[x] which are
relatively prime. Suppose that B(x) has a zero c ∈ Q not equal to 0 or 1728.
Since j(τ0) = c for some τ0 ∈ H′ by Lemma 7.1, we attain B(j(τ0)) = 0.
But, since A(x) is not divisible by (x − c), we see that A(j(τ0)) 6= 0, which
contradicts that h(τ) is holomorphic on H′. Thus we conclude that 0 and
1728 are the only possible zeros of B(x), which proves the converse inclusion

O1
1
′
(Q) ⊆ Q[j(τ), j(τ)−1, (j(τ) − 1728)−1]. �

Lemma 7.3. Modular units of level 1 are exactly nonzero rational numbers.

Proof. See [6, Lemma 2.1]. One can also justify by using Lemma 7.1. �

Theorem 7.4. If N ≥ 2, then we obtain

O1
N

′
(Q) = O1

1
′
(Q)[f[ 1/N

0

](τ)] = Q[j(τ), j(τ)−1, (j(τ)− 1728)−1, f[ 1/N
0

](τ)].

Proof. Since f[ 1/N
0

](τ) is weakly holomorphic, we get the inclusion O1
N

′
(Q) ⊇

O1
1
′
(Q)[f[ 1/N

0

](τ)].

For the converse inclusion, let h = h(τ) ∈ O1
N

′
(Q). Since F1

N (Q) is generated
by f = f[ 1/N

0

](τ) over F1 = F1
1 (Q) by Proposition 6.1, we can write

(13) h = c0 + c1f + · · ·+ cd−1f
d−1,

where d = [F1
N(Q) : F1

1 (Q)] and c0, c1, . . . , cd−1 ∈ F1
1 (Q). If f1, f2, . . . , fd are

all the Galois conjugates of f over F1
1 (Q) and D =

∏

1≤m,n≤d(fm − fn)
2, then

one can show that

(14) c0, c1, . . . , cd−1 ∈ D−1O1
1
′
(Q)

as in the proof of Theorem 6.2. By Lemma 3.3, we see that each (fm − fn)
6 is

of the form

(fm − fn)
6 = 21236j(τ)2(j(τ) − 1728)3

gu+v(τ)
6gu−v(τ)

6

gu(τ)12gv(τ)12

for some u,v ∈ VN such that u 6≡ ±v (mod Z2). It then follows from Lemma
7.3 that

D = cj(τ)d(d−1)/3(j(τ) − 1728)d(d−1)/2 for some nonzero c ∈ C.

Now that D ∈ F1
1 (Q) = Q(j(τ)), we must have d(d − 1)/3 ∈ Z and c ∈ Q.

Hence we achieve by Theorem 7.2, (13) and (14) that h(τ) ∈ O1
1
′
(Q)[f[ 1/N

0

](τ)].

Therefore, the inclusion O1
N

′
(Q) ⊆ O1

1
′
(Q)[f[ 1/N

0

](τ)] also holds. �
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Remark 7.5. For N ≥ 2, let Fr′N be the set of weak Fricke families of level N ,
namely, the families {hv(τ)}v∈VN

of functions in FN satisfying (F1′), (F2) and
(F3). It is also a ring under the operations stated in (5). In a similar way to

the proof of Theorem 4.3, one can claim that Fr′N is isomorphic to O1
N

′
(Q).

Therefore, we deduce by Theorem 7.4 that a family {hv(τ)}v∈VN
of functions

in FN is a weak Fricke family of level N if and only if there is a polynomial
P (x, y, z, w) ∈ Q[x, y, z, w] so that

hv(τ) = P (j(τ), j(τ)−1 , (j(τ) − 1728)−1, fv(τ)) for all v ∈ VN .
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