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NORMALITY CRITERIA FOR A FAMILY OF

HOLOMORPHIC FUNCTIONS CONCERNING THE TOTAL

DERIVATIVE IN SEVERAL COMPLEX VARIABLES

Tingbin Cao and Zhixue Liu

Abstract. In this paper, we investigate a family of holomorphic func-
tions in several complex variables concerning the total derivative (or called
radial derivative), and obtain some well-known normality criteria such as
the Miranda’s theorem, the Marty’s theorem and results on the Hayman’s
conjectures in several complex variables. A high-dimension version of the
famous Zalcman’s lemma for normal families is also given.

1. Introduction and main results

Let C be the open complex plane and G be a domain of C. A family F of
meromorphic functions onG is said to be normal, in the sense of Montel, if every
sequence of functions in F contains a subsequence which converges uniformly on
compact subsets of G to function f which is meromorphic or identically ∞, the
convergence being with respect to the spherical metric dσ = |dw|/(1+|w|2). The
family F is said to be normal at a point z0 ∈ G, if there exists a neighborhood
of z0 in which F is normal. It is well known that F is normal in G if and
only if it is normal at every point of G. At the beginning of the 20th century,
P. Montel introduced the concept of normal families and built the theory of
normal families. One major study of normal families theory is to seek normality
criteria. Corresponding to the famous Picard’s theorem which says that a
nonconstant entire function can omit at most one value, Montel obtained the
following result called later as the Montel’s theorem (see [23]): Let F be a family

of holomorphic functions in G ⊆ C. If f(z) 6= 0, f(z) 6= 1 for all f ∈ F , then

F is normal in G. Soon after, Montel raised an important question: Whether

does the conclusion still hold that if the condition given that f(z) 6= 1 changed

into f (k)(z) 6= 1? In 1935, Miranda obtained the following theorem (see [22])
to answer the Montel’s question.
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Theorem 1.1 ([22]). Let F be a family of holomorphic functions in a domain

G ⊆ C, and k be a positive integer. If f(z) 6= 0, f (k)(z) 6= 1 for all f ∈ F , then

F is normal in G.

Bloch had ever conjectured that a family of holomorphic (meromorphic)
functions which have a common property P in a domain G will in general be
a normal family if P reduces a holomorphic (meromorphic) function in the
complex plane C to a constant. Unfortunately, the Bloch’s principle is not
universally true. However, the point of departure for the normality criteria
provides a well way to study normal family. In the work of [2, 4, 7, 13], some
Picard-type results with respect to differential polynomials are showed as fol-
lows: Let f be a meromorphic function in the plane C, and a(a 6= 0) be a
finite complex number, n be a positive integer. If either fnf ′(z) 6= a(n ≥ 1), or
f ′(z)−fn(z) 6= a(n ≥ 5), then f(z) is a constant. Hayman had ever conjectured
that

A. Let F be a family of holomorphic functions in G ⊆ C and n be a
positive integer. If f ′(z)fn(z) 6= 1 for all f ∈ F , then F is normal in
G;

B. Let F be a family of meromorphic functions in G ⊆ C and n ≥ 5 be a
positive integer. If f ′(z) − afn(z) 6= b(a 6= 0) for all f ∈ F , then F is
normal in G.

For the conjecture A, many significant contributions along this line have been
made, see [33] for n ≥ 2 and in 1982, Oshkin [25] confirmed that the normality
of F holds for n = 1. Furthermore, many authors considered normality criteria
for the case of meromorphic functions corresponding to the conjecture A, and
proved that it is also true. For n ≥ 5, see [33], and the result of n ≥ 3 had been
obtained in [12], for n = 2, see [26], and n = 1 was also confirmed in [2, 4, 36].

For the conjecture B, S. Y. Li [16] proved the case of n ≥ 5, and see [2, 4,
27, 36] for n = 3, n = 4. If F is a family of holomorphic functions, Drasin [6]
proved that F is normal for n ≥ 3, and the result of n = 2 can be found in
[34]. The famous Zaclman’s lemma [35] plays a key role in the proofs of the
conjectures A and B.

In 1931, F. Marty proved a well-known normality criterion.

Theorem 1.2 ([21, 30]). A family F of meromorphic functions in a domain

G ⊂ C is normal in G if and only if
{

f ♯(z) = |f ′(z)|
1+|f(z)|2 : f ∈ F

}

is locally

uniformly bounded in G.

Following the Marty’s theorem, some significant generalizations along this
line have been made. For examples, in 1985, Royden [28] obtained: Let F be

a family of meromorphic functions on G ⊂ C with the property that for each

compact set K ⊂ G, there is a monotone increasing function hK such that

|f ′(z)| ≤ hK(|f(z)|) for all f ∈ F and all z ∈ K. Then F is normal. In 1986,
Li and Xie considered the higher order derivatives and generalized the Marty’s
theorem as follows.
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Theorem 1.3 ([17]). Let F be a family of functions meromorphic in a domain

G ⊂ C such that each f ∈ F has zeros only of multiplicities ≥ k (k ∈ N). Then
the family F is normal in G if and only if

{ |f (k)(z)|
1 + |f(z)|k+1

: f ∈ F
}

is locally uniformly bounded in G.

Some authors considered the Marty’s theorem under the condition of
|f(k)(z)|
1+|f(z)|α ≥ ε (ε > 0) instead of f ♯(z). For examples, in 2010, J. Grahl and

S. Nevo proved for the case of k = 1, α = 2 (see [9]). In 2011, Liu, Nevo and
Pang[19] generalized the result for the case of k = 1, α > 1. Chen, Nevo and
Pang obtained the corresponding result for all k ∈ N, α > 1 (see [5]). See also
a very recent paper [10].

In the case of higher dimension, a family F of holomorphic mappings of a
domain G in Cm into complex projective space PN (C) is said to be normal on
G if any sequence in F contains a subsequence which converges uniformly on
compact subsets of G to a holomorphic mapping of G into PN (C). Bloch [3],
Fujimoto [8] and Green [11] established the Picard-type theorem for holomor-
phic mappings from Cm into PN (C). Nochka [24] extended the results [3, 8, 11]
to the case of finite intersection multiplicity. Tu [31] gave some normality cri-
teria for families of holomorphic mappings of several complex variables into
PN (C) for fixed hyperplanes related to Nochka’s results. Bargmann, Bonk,
Hinkkanen and Martin [1] introduced a new idea related to the Montel’s the-
orem and proved a normality criterion for families of meromorphic functions
omitting three continuous functions. However, as far as we known, there are
very little papers to consider the derivative for normal families, except that
Tu and Zhang [32] studied this topic using the definition of

∑m

j=1 ejfzj where

‖e‖ =
√

∑m

j=1 |ej |2 = 1.

Throughout the rest of the paper, we use the following notations:

z = (z1, z2, . . . , zm) ∈ C
m, zj ∈ C(j = 1, 2, . . . ,m);

0 = (0, 0, . . . , 0) ∈ Cm, ‖z − z0‖ =

√

√

√

√

m
∑

j=1

|zj − zj0|2;

∆δ(z0) := {z ∈ Cm : ‖z − z0‖ < δ} .

In 2004, L. Jin introduced the following definition of the total derivative
for entire functions in several complex variables, and obtained some Picard-
type theorems concerning the total derivative as follows. As far as we know,
the total derivative of f is also called the radial derivative of f at z (see for
example [29, 37]), and the k-th order total derivative is also called iterated
radial derivative (see for example [14, 18]).
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Definition ([15]). Let f be an entire function on Cm, z = (z1, z2, . . . , zm) ∈
Cm, the total derivative Df of f is defined by

Df(z) =

m
∑

j=1

zjfzj (z),

where fzj is the partial derivative of f with respect to zj (j = 1, 2, . . . ,m). The
k-th order total derivative Dkf of f is defined by

Dkf = D(Dk−1f)

inductively.

Theorem 1.4 ([15, Theorems 1.1, 1.2]). Let f be an entire function on Cm, let

a and b(6= 0) be two distinct complex numbers, and let k be a positive integer.

If either

f(z) 6= a, Dkf(z) 6= b,

or

fk(z) ·Df(z) 6= b, k ≥ 2,

then f(z) is constant.

In [20], F. Lü investigated the Picard type theorems for meromorphic func-
tions concerning the total derivative in several complex variables.

According to the Bloch’s principle, one may ask whether there exist some
normal criteria for a family of holomorphic functions with respect to Theorem
1.4 concerning the total derivative? In this paper, we mainly consider this
and will extend the Miranda’s theorem, the Marty’s theorem, the results on
Hayman’s conjectures to several complex variables. The first one is an extension
of the Miranda’s theorem (Theorem 1.1).

Theorem 1.5. Let F be a family of holomorphic functions in a domain G of

Cm, and k be a positive integer. If f(z) 6= 0 and Dkf(z) 6= 1 for all f ∈ F ,
then F is normal in G.

Next, we extend the Marty’s theorem, and obtain a theorem concerning the
total derivative as follows, in which a necessary condition for the case α > 1 is
given, and a sufficient condition for the case α = 2 are also given. Owing to
the definition of the total derivative, we successfully take a special way of the
domain ∆(z0) containing the point z0 (which is very different from before) in
the proof of (ii). However, we only consider domain outside of the point of the
origin in the conclusion (ii). We don’t know whether or not Theorem 1.6(ii)
and Corollary 1.7 as follows remain valid if G \ {0} is replaced by G.

Theorem 1.6. Let F be a family of holomorphic functions in a domain G of

Cm.
(i) If α > 1 and F is normal in G, then

F1
α :=

{ |Df(z)|
1 + |f(z)|α : f ∈ F

}
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is locally uniformly bounded in G.
(ii) If

F1
2 :=

{

|Df(z)|
1 + |f(z)|2

: f ∈ F
}

is locally uniformly bounded in G, then F is normal in G \ {0}.
From Theorem 1.6, we get immediately the following corollary which is al-

most an accurate extension of Theorem 1.2 when omitting the point of origin.

Corollary 1.7. Let F be a family of holomorphic functions in a domain G of

Cm. Then F is normal in G \ {0} if and only if

F1
2 :=

{

|Df(z)|
1 + |f(z)|2

: f ∈ F
}

is locally uniformly bounded in G \ {0}.
For a general domain containing the origin, we get the following result on

the extension of the Marty’s theorem, in which an assumption of f(z) 6= 0 in a
neighborhood of the origin is added.

Theorem 1.8. Let F be a family of holomorphic functions in a domain G
containing the origin in Cm.

(i) If there exists δ(> 0) such that f(z) 6= 0 for all f ∈ F and all z ∈
∆δ(0) ⊂ G, and if α > 0 and

F1
α :=

{ |Df(z)|
1 + |f(z)|α : f ∈ F

}

is locally uniformly bounded in G, then F is normal in G.
(ii) If f(z) 6= 0 for any f ∈ F and all z ∈ G, and if α > 0, k ∈ N+ and

Fk
α :=

{ |Dkf(z)|
1 + |f(z)|α : f ∈ F

}

is locally uniformly bounded in G, then F is normal in G.

By Theorem 1.6(i) and Theorem 1.8(i), we obtain immediately another corol-
lary which is an extension of Theorem 1.2 when considering the origin.

Corollary 1.9. Let F be a family of holomorphic functions in a domain G
containing the origin in Cm. Suppose that there exists δ(> 0) such that f(z) 6= 0
for all f ∈ F and z ∈ ∆δ(0) ⊂ G. Then for α > 1, the family F is normal in

G if and only if

F1
α :=

{ |Df(z)|
1 + |f(z)|α : f ∈ F

}

is locally uniformly bounded in G.

Similarly as in [5, 9, 10, 19] to consider the lower bound of Fk
α in a domain,

we get the following results.
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Theorem 1.10. Let F be a family of holomorphic functions in a domain G
containing the origin in Cm, and h(x) be a strictly monotonically increasing

function in x ∈ [0,+∞) satisfying h(0) ≥ 0.
(i) Suppose that α > 1. If there exists δ(> 0) such that f(z) 6= 0 for all

f ∈ F and z ∈ ∆δ(0) ⊂ G and

(1)
|Df(z)|

1 + |f(z)|α ≥ h(‖z‖), z ∈ G

holds for all f ∈ F , then F is normal in G;
(ii) Suppose that 0 < α < 1, k ∈ N+. If f(z) 6= 0 for all f ∈ F and all z ∈ G,

and

(2)
|Dkf(z)|
1 + |f(z)|α ≥ h(‖z‖), z ∈ G

holds for all f ∈ F , then F is normal in G.

Corollary 1.11. Instead of the inequality (1) and (2), the conclusion (i) and

(ii) of Theorem 1.10 are also true under the inequality

|Df(z)|
1 + |f(z)|α ≥ ε, z ∈ G

and
|Dkf(z)|
1 + |f(z)|α ≥ ε, z ∈ G,

where ε > 0, respectively.

Corollary 1.12. Corresponding to the conclusion (i) and (ii) of Theorem 1.10,

there exists a positive constant C such that

inf
z∈G

|Df(z)|
1 + |f(z)|α ≤ C

and

inf
z∈G

|Dkf(z)|
1 + |f(z)|α ≤ C

for all holomorphic function f(z) in G ⊂ C
m, respectively.

At last, we investigate the extensions of results of the Hayman’s conjecture
concerning the total derivative under the condition that the domain G contains
the origin.

Theorem 1.13. Let F be a family of holomorphic functions in a domain G
containing the origin in Cm, k ∈ N+, and h(z) 6= 0 be continuous in G. Take

Ef := {z ∈ G : fk ·Df = h(z), f ∈ F}.
If there exist δ(> 0) and M(> 0) such that for all f ∈ F , f(z) 6= 0 for all

z ∈ ∆δ(0) ⊂ G and |f(z)| ≥ M whenever z ∈ Ef , then F is normal in G.
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Corollary 1.14. Let F be a family of holomorphic functions in a domain G
containing the origin in Cm, k ∈ N+, and h(z) 6= 0 be continuous in G. If there
exists δ(> 0) such that f(z) 6= 0 and z ∈ ∆δ(0) ⊂ G, and

fk ·Df 6= h(z)

for all f ∈ F , then F is normal in G.

Theorem 1.15. Let F be a family of holomorphic functions in a domain G
containing the origin in Cm. Let k ∈ N+(≥ 3), a be a nonzero finite complex

number, and h(z) 6= 0 be continuous in G. If there exists δ(> 0) such that

f(z) 6= 0 and z ∈ ∆δ(0) ⊂ G, and

Df + afk 6= h(z)

for all f ∈ F , then F is normal in G.

The remainder of this paper is organized as follows. Theorem 1.6 is proved
in Section 2. In Section 3, we mainly introduce the version of the Zalcman
lemma concerning the total derivative in several complex variables and then
prove Theorem 1.8. In Section 4, we give the proof of Theorem 1.10. At the
last section, we will give the proofs of Theorems 1.5, 1.13 and 1.15.

2. Proof of Theorem 1.6

Firstly, we prove the claim of (i). Assume that the conclusion is not true,
then there exist a point z0 ∈ G and a sequence {zn} ⊆ G, such that zn →
z0(n → ∞), {fn} ⊆ F , and

(3) lim
n→∞

|Dfn(zn)|
1 + |fn(zn)|α

= ∞.

Due to the condition that F is normal in G, there exists an appropriate subse-
quence {fnj (z)} ⊆ {fn(z)} which converges uniformly to a holomorphic func-
tion f or ∞ in G. Without loss of generality, we still say {fn(z)} instead of
{fnj(z)}. If f is holomorphic, then Df is also holomorphic, this contradicts to
(3). So f(z) ≡ ∞ and thus limn→∞ fn(z0) = ∞.

Take positive real number r0 and R0 such that

∆R0
(z0) = {z ∈ C

m : ‖z − z0‖ ≤ R0} ⊆ G

and

0 < r0 < R0
α

1
2m − 1

α
1

2m + 1
(α > 1).

It yields

1 + r0
R0

(1− r0
R0

)2m−1
−

1− r0
R0

(1 + r0
R0

)2m−1
α < 0
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and ∆R0
(z0) is a spherical neighborhood of z0. For all z ∈ ∆r0(z0) and large

enough n, owing to the Harnack’s inequality, we obtain

1− r0
R0

(1 + r0
R0

)2m−1
ln |fn(z0)| ≤ ln |fn(z)| ≤

1 + r0
R0

(1 − r0
R0

)2m−1
ln |fn(z0)| ,

and thus,

(4) |fn(z0)|
1−

r0
R0

(1+
r0
R0

)2m−1 ≤ |fn(z)| ≤ |fn(z0)|
1+

r0
R0

(1−
r0
R0

)2m−1

.

Let Dm(z0, ν) ⊆ ∆r0(z0) be a multi-disc neighborhood of z0 as follows

Dm(z0, ν) =
{

z = (z1, z2, . . . , zm) ∈ C
m : ‖zj − zj0‖ < νj , j = 1, 2, . . . ,m

}

,

where ν = (ν1, ν2, . . . , νm) ∈ R
m
+ , ‖ν‖ ≤ r0. Now for all z ∈ Dm(z0, ν), applying

the Cauchy’s inequality and combining with (4), we have

|(fn(z))zj | ≤ 1

νj
sup

z∈Dm(z0,ν)

|fn(z)| ≤
1

νj
|fn(z0)|

1+
r0
R0

(1−
r0
R0

)2m−1

,

where j = 1, 2, . . . ,m. Hence,

|Dfn(z)| ≤ |z1(fn(z))z1 |+ |z2(fn(z))z2 |+ · · ·+ |zm(fn(z))zm |

≤ (‖z0‖+ r0)

(

1

ν1
+

1

ν2
+ · · ·+ 1

νn

)

|fn(z0)|
1+

r0
R0

(1−
r0
R0

)2m−1

.

The above inequality implies that limn→∞ fn(z0) = ∞.

Take M = (‖z0‖+ r0)
(

1
ν1

+ 1
ν2

+ · · ·+ 1
νn

)

, thus

|Dfn(zn)|
1 + |fn(zn)|α

≤ M |fn(z0)|
1+

r0
R0

(1−
r0
R0

)2m−1

1 + |fn(z0)|
1−

r0
R0

(1+
r0
R0

)2m−1
α

≤ M |fn(z0)|
1+

r0
R0

(1−
r0
R0

)2m−1
−

1−
r0
R0

(1+
r0
R0

)2m−1
α

→ 0 (n → ∞).

This is a contradiction to (3).
Secondly, we prove the claim of (ii). Take any non-origin z0 = (z10 , z

2
0 , . . .,

zm0 ) ∈ G ⊆ Cm, ‖z0‖ = r0 > 0. Owing to the definition of the total derivative,
we take a special domain containing the point z0 as follows (different from
before)

∆(z0) :=

{

z | z = z0e
t+iθ, ln(1 − δ

r0
) < t < ln(1 +

δ

r0
), θ ∈ (−ε, ε)

}

,

where 0 < δ < r0 and ε is a real number small enough. Below it is sufficient to
prove the F is normal in ∆(z0).
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Let f(z) ∈ F . According to the assumption of the sufficiency, there exists a
positive number M such that

|Df(z)|
1 + |f(z)|2

≤ M, z ∈ ∆(z0).

Take z = z0e
t∗+iθ∗ ∈ ∆(z0), where ln(1 − δ

r0
) < t∗ < ln(1 + δ

r0
), −ε < θ∗ < ε.

Define a function as follows:

h(τ, θ) := arctan |f(z0eτ+iθ)|,
where 0 ≤ τ ≤ t∗, 0 ≤ θ ≤ θ∗. From

dh(τ, θ)

dτ
=

1

1 + |f(z0eτ+iθ)|2
d

dτ
|f(z0eτ+iθ)|

=
1

1 + |f(z0eτ+iθ)|2
d

dτ
eRe(ln f(z0e

τ+iθ))

=
|f(z0eτ+iθ)|

1 + |f(z0eτ+iθ)|2Re
(

d

dτ
ln(f(z0e

τ+iθ))

)

=
|f(z0eτ+iθ)|

1 + |f(z0eτ+iθ)|2Re
(

d
dτ
f(z0e

τ+iθ)

f(z0eτ+iθ)

)

and
∣

∣

∣

∣

d

dτ
f(z0e

τ+iθ)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

m
∑

j=1

zj0e
τ+iθf

z
j
0
eτ+iθ

∣

∣

∣

∣

∣

∣

= |Df(z0e
τ+iθ)|,

we get
∣

∣

∣

∣

dh(τ, θ)

dτ

∣

∣

∣

∣

≤ |Df(z0e
τ+iθ)|

1 + |f(z0eτ+iθ)|2 ≤ M.

Similarly, we have
∣

∣

∣

∣

dh(0, θ)

dθ

∣

∣

∣

∣

≤ |Df(z0e
iθ)|

1 + |f(z0eiθ)|2
≤ M.

Hence,

| arctan |f(z)| − arctan |f(z0)|| = |h(t∗, θ∗)− h(0, 0)|

≤
∣

∣

∣

∣

∣

∫ t∗

0

dh(τ, θ∗)

dτ
dτ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ θ∗

0

dh(0, θ)

dθ
dθ

∣

∣

∣

∣

∣

≤ M · (t∗ + θ∗)

≤ M ·
(

ln(1 +
δ

r0
) + ε

)

.

Choose appropriate numbers δ and ε such that ln(1 + δ
r0
) ≤ π

12M − ε.

For the case of |f(z0)| ≤ 1, we have

arctan |f(z)| ≤ π

12
+

π

4
=

π

3
(z ∈ ∆(z0)),
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therefore
|f(z)| ≤

√
3 (z ∈ ∆(z0)).

For the case of |f(z0)| > 1, we get

arctan |f(z)| > π

4
− π

12
=

π

6
(z ∈ ∆(z0)),

therefore

|f(z)| > 1√
3

(z ∈ ∆(z0)).

Both of the above cases imply that F is normal at the point z0(6= 0).

3. Proof of Theorem 1.8

We firstly introduce a lemma on normal families concerning the total deriv-
ative in a neighborhood of the origin.

Lemma 3.1. Let F be a family of holomorphic functions in a domain G con-

taining the origin in Cm. If F is normal in G \ {0} and there exists δ(> 0)
such that f(z) 6= 0 for all f ∈ F and z ∈ ∆δ(0), then F is normal in G.

Proof. Let

∆r(0) := {z ∈ C
m : ‖z‖ ≤ r, δ > r > 0} ⊂ ∆δ(0),

∂∆r(0) := {z ∈ C
m : ‖z‖ = r, r > 0}.

By the given condition that F is normal in G \ {0}, the family F is normal in
∂∆r(0), so for any sequences {fn} ⊆ F , there exists subsequence {fnj} which
converges uniformly to a holomorphic function f or ∞ on ∂∆r(0).

If f(z) 6= ∞, then f is analytic on ∂∆r(0). Hence, there exist positive
integers N and M such that for any j ≥ N, we obtain

|fnj (z)| ≤ M,

where z ∈ ∂∆r(0). Furthermore, there exists a sequence {zj} ⊆ ∂∆r(0) such
that

max
z∈∂∆r(0)

|fnj (z)| = fnj (zj).

By the Maximum modulus principle,

|fnj (z)| ≤ |fnj (zj)| ≤ M

holds for all z ∈ ∆r(0) and for any positive integer j large enough. So, the
subsequence {fnj (z)} is normal at the origin, and there exists a subsequence
{

fnjk

}∞

k=1
of
{

fnj (z)
}

converges locally uniformly in a neighborhood of the

origin. In view of the fact that
{

fnjk

}∞

k=1
is a subsequence of {fn(z)}, we get

that F is normal at the origin.
For the case of f(z) ≡ ∞, we get that for arbitrarily positive number M ,

there are nj large enough such that {fnj} ⊂ F and

|fnj (z)| ≥ M
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for every z ∈ ∂∆r(0). Considering the condition fnk
(z) 6= 0 in ∆δ(0), we know

that 1
f
is holomorphic on ∆r(0). Based on the minimum modulus principle, for

all z ∈ ∆r(0), we have
1

|fnj (z)|
≤ 1

M
.

So, {fnj(z)} is normal at the origin, and thus there exists
{

fnjk

}∞

k=1
⊆
{

fnj (z)
}

which converges locally uniformly in a neighborhood of the origin. In view of

the fact
{

fnjk

}∞

k=1
⊆ {fn(z)}, we get that F is normal at the origin.

Therefore, F is normal in G. �

We next introduce an extension of the classical results due to Pang [26,
Lemma 1] concerning the total derivative.

Lemma 3.2. Let f(z) be a holomorphic function in the unit ball Dm = {z ∈
Cm : ‖z‖ < 1}, and let −1 < k < 1. If there exists a point z∗ satisfying

0 < ‖z∗‖ < r < 1 such that

(ln r
‖z

∗
‖
)1+k|Df(z∗)|

(ln r
‖z

∗
‖
)2k + |f(z∗)|2

> 1,

then there exist a point z0 (0 < ‖z∗‖ ≤ ‖z0‖ < r) and a number t0 (0 < t0 < 1)
such that

sup
‖z‖<r

(ln r
‖z‖

)1+kt1+k
0 |Df(z)|

(ln r
‖z‖

)2kt2k0 + |f(z)|2 =
(ln r

‖z0‖
)1+kt1+k

0 |Df(z0)|
(ln r

‖z0‖
)2kt2k0 + |f(z0)|2

= 1.

Proof. Let E := {(z, t) : z ∈ Dm, 0 < ‖z‖ < r < 1, 0 < t ≤ 1} and define a
continuous function

F (z, t) :=
(ln r

‖z‖
)1+kt1+k|Df(z)|

(ln r
‖z‖

)2kt2k + |f(z)|2 , (z, t) ∈ E.

It is sufficient to prove that there exists (z0, t0), 0 < ‖z∗‖ ≤ ‖z0‖ < r < 1, 0 <
t0 < 1 such that

sup
‖z‖<r

F (z, t0) = F (z0, t0) = 1.

We claim that

(5) lim
(ln r

‖z‖
)t→0

F (z, t) = 0.

In fact, let (ln r
‖zn‖

)tn → 0 as n → ∞, where ‖zn‖ < r, 0 < tn < 1, zn → z̃0
(n → ∞). Then ‖z̃0‖ ≤ r.

(i) If f(z̃0) 6= 0, then for −1 < k,

0 ≤ lim
n→∞

F (zn, tn) ≤ lim
n→∞

(

ln r
‖zn‖

)1+k

t1+k
n |Df(zn)|

|f(zn)|2
= 0.
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(ii) If f(z̃0) = 0, then for k < 1,

0 ≤ lim
n→∞

F (zn, tn) ≤ lim
n→∞

(

ln
r

‖zn‖

)1−k

t1−k
n |Df(zn)| = 0.

Let U = {(z, t) ∈ E : F (z, t) > 1}. Then (z∗, 1) ∈ U, and thus the set U
is nonempty. Taking t0 = inf{t : (z, t) ∈ U}, then owing to (5), t0 6= 0. If
t0 = 1, then there exists a sequence {tn}(< 1) such that tn → t0 (n → ∞)
and F (z∗, tn) ≤ 1. Let n → ∞, F (z∗, tn) → F (z∗, 1) ≤ 1, this contradicts that
(z∗, 1) ∈ U . Hence, we have 0 < t0 < 1. Take z0, (z0, t0) ∈ U , satisfying

sup
‖z‖≤r

F (z, t0) = F (z0, t0).

Let us discuss it in two cases:

• If F (z0, t0) < 1, then due to the definition of t0, there exists (z, tn),
0 < ‖z‖ < r < 1, 0 < tn < 1, tn → t0 such that F (z, tn) ≥ 1. In
addition, F (z, t0) ≤ F (z0, t0) < 1 and limn→∞ F (z, tn) = F (z, t0).
Thus for n large enough, F (z, tn) < 1, a contradiction.

• If F (z0, t0) > 1. Owing to (5), we know F (z0, 0) = 0. Then for the
continuity of F (z, t) with respect to t in set E, there exists 0 < t1 <

t0 such that F (z0, t1) = 1 + F (z0,t0)−1
2 > 1. it is impossible for the

definition of t0.

So there exists (z0, t0) such that

(6) sup
‖z‖<r

F (z, t0) = F (z0, t0) = 1.

Considering (5), we know ‖z0‖ < r. In addition, if ‖z0‖ < ‖z∗‖, then F (z∗, t0) <
1 owing to (6). Combining with F (z∗, 1) > 1 and the continuity of F (z, t)
with respect to t in set E, it follows that there exists t0 < t∗ < 1 such that
F (z∗, t∗) = 1. That completes this proof. �

Remark 3.3. If f(z) 6= 0 in the unit ball Dm for all f ∈ F , then Lemma 3.2
holds for all −1 < k < +∞.

It is well-known that the Zalcman’s lemma [35] plays an important role in
the proofs of many normality criteria in one complex variable. Here, we need
propose an extension of the Zalcman’s lemma concerning the total derivative
as follows.

Lemma 3.4. Let F be a family of holomorphic functions in the unit ball Dm =
{z ∈ Cm : ‖z‖ < 1} and f(z) 6= 0 for every f ∈ F and for all z ∈ ∆δ(0)
(0 < δ < 1). If F is not normal in Dm, then for all −1 < k < 1, there exist:

(i) real number 0 < r < 1;
(ii) {zn} ⊆ Dm satisfying 0 < ‖zn‖ < r;
(iii) {fn} ⊆ F l;
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(iv) sequence {ρn} → 0+ such that

gn(ζ) =
fn(zne

ρnζ)

ρkn
, (ζ ∈ C)

converges locally uniformly to a nonconstant entire function g(ζ) in C, where

zne
ρnζ ∈ D

m. Furthermore, if f(z) 6= 0 for all f ∈ F and z ∈ D
m, then k can

be chosen in (−1,+∞).

Proof. Suppose F is not normal in Dm. Then there exists at least one non-origin
point z0 ∈ Dm such that F is not normal at z0. For otherwise, by Lemma 3.1,
F is normal in Dm. Together with the conclusion (ii) of Theorem 1.6, there
exist 0 < r∗ < 1, ‖z∗n‖ < r∗, {fn} ⊆ F such that

(7) lim
n→∞

|Dfn(z
∗
n)|

1 + |fn(z∗n)|2
= ∞,

where z∗n → z0 as n → ∞. Choose r such that 0 < r∗ < r < 1, and define

Fn(z, t) =
(ln r

‖z‖
)1+kt1+k|Dfn(z)|

(ln r
‖z‖

)2kt2k + |fn(z)|2
,

where 0 < ‖z‖ < r, 0 < t ≤ 1. For sufficiently large integer n, we can assume

0 < ‖z0‖

2 < ‖z∗n‖ < r∗, and then ln r
r∗

< ln r
‖z∗

n‖
< ln 2r

‖z0‖
. In addition,

Fn(z
∗
n, 1) =

(ln r
‖z∗

n‖
)1+k|Dfn(z

∗
n)|

(ln r
‖z∗

n‖
)2k + |fn(z∗n)|2

=

(

ln
r

‖z∗n‖

)1−k |Dfn(z
∗
n)|

1 +
|f(z∗

n)|
2

(ln r
‖z∗n‖

)2k

.

Note that −1 < k < 1. Then Fn(z
∗
n, 1) ≥ (ln | r

r∗
|)1−k |Dfn(z

∗

n)|

1+
|f(z∗n)|2

ln |

r
r∗

|
2k

. Together with

(7), we have

lim
n→∞

Fn(z
∗
n, 1) = ∞.

Thus, for n large enough,

Fn(z
∗
n, 1) > 1.

Owing to Lemma 3.2, there exist {zn} and {an} satisfying

0 <
‖z0‖
2

< ‖z∗n‖ ≤ ‖zn‖ < r, 0 < an < 1,

related to every fn ∈ F such that

sup
‖z‖<r

Fn(z, an) = Fn(zn, an) = 1.

Hence,

1 = Fn(zn, an) ≥ Fn(z
∗
n, an) ≥ a1+k

n Fn(z
∗
n, 1),

which yields

lim
n→∞

an = 0.
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Let ρn = ln r
‖zn‖

an → 0+, and it follows that

(8) lim
n→∞

ρn
ln r

‖zn‖

= 0.

Thus the function

gn(ζ) :=
fn(zne

ρnζ)

ρkn

is defined in |ζ| < Rn =
ln r

‖zn‖

ρn
→ ∞, and satisfies

g′n(ζ) = ρ1−k
n Df(zne

ρnζ),

|g′n(ζ)|
1 + |gn(ζ)|2

=
ρ1+k
n |Df(zne

ρnζ)|
ρ2kn + |f(zneρnζ)|2 (|ζ| < R < Rn).

Owing to (8), then for |ζ| < R,

ln r
‖zn‖

ln r
‖zneρnζ‖

→ 1 (n → ∞).

Hence, there exists εn → 0+ such that

ρ1+k
n ≤

(

(1 + εn)(ln
r

‖zneρnζ‖ )
)1+k

a1+k
n ,

ρ2kn ≥
(

(1− εn)(ln
r

‖zneρnζ‖)
)2k

a2kn .

Furthermore, we have

|g′n(ζ)|
1 + |gn(ζ)|2

≤ (1 + εn)
1+k

(1 − εn)2k
·
(ln r

‖zneρnζ‖
)1+ka1+k

n |Dfn(zne
ρnζ)|

(ln r
‖zneρnζ‖

)2ka2kn + |fn(zneρnζ)|2

=
(1 + εn)

1+k

(1 − εn)2k
Fn(zne

ρnζ , an)

≤ (1 + εn)
1+k

(1 − εn)2k
.

By the Marty’s theorem (Theorem 1.2), {gn(ζ)} is normal in C. Without
loss of generality, we may assume {gn(ζ)} converges locally uniformly to a
holomorphic function g(ζ) in C or ∞. In addition,

|g′n(0)|
1 + |gn(0)|2

=
ρ1+k
n |Dfn(zn)|

ρ2kn + |fn(zn)|2
= Fn(zn, an) = 1,

it implies that g(ζ) 6≡ ∞. Thus g(ζ) is a holomorphic function and

|g′(0)|
1 + |g(0)|2 = lim

n→∞

|g′n(0)|
1 + |gn(0)|2

= 1.

Hence, g(ζ) is a nonconstant entire function in C. �
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Proof of Theorem 1.8. Assume that F is not normal in the domain G ⊂ Cm.
Note that the origin is in G. Without loss of generality, we may assume that
G is the unit ball Dm and there exists at least non-origin point z0 ∈ Dm such
that F is not normal at z0.

(i) In view of Lemma 3.4, there exist 0 < r < 1, {zn} ⊂ ∆r(0) ⊂ G,
{fn} ⊆ F , {ρn} → 0+ such that

gn(ζ) =
fn(zne

ρnζ)

ρ
1
2
n

converges locally uniformly to nonconstant entire function g(ζ). Furthermore,
we have

(9) ρ
1
2
n ·Dfn(zne

ρnζ) = g′n(ζ) → g′(ζ)(n → ∞), ζ ∈ C.

For any given ζ ∈ C, there exists an integer n large enough such that zne
ρnζ ∈

∆r(0). Thus by the condition given, we have

|g′n(ζ)| = ρ
1
2
n · |Dfn(zne

ρnζ)|

≤ ρ
1
2
n ·M(1 + |fn(zneρnζ)|α)

= ρ
1
2
n ·M(1 + |gn(ζ)ρ

1
2 |α)

→ 0 (n → ∞),

where M is only dependent on the domain ∆r(0). Combining with (9), we have
g′(ζ) ≡ 0, i.e., g(ζ) is a constant, a contradiction.

(ii) In view of Lemma 3.4, there exist 0 < r < 1, {zn} ⊂ ∆r(0) ⊂ G,
{fn} ⊆ F , {ρn} → 0+ such that

gn(ζ) =
fn(zne

ρnζ)

ρ
k
2
n

converges locally uniformly to a nonconstant entire function g(ζ) in C. In ad-
dition, since f(z) 6= 0 for every f ∈ F and for all z ∈ G, we have gn(ζ) 6= 0
and thus g(ζ) 6= 0. Furthermore, in C, we have

(10) ρ
k
2
n ·Dkfn(zne

ρnζ) = g(k)n (ζ) → g(k)(ζ) (n → ∞).

For any given ζ ∈ C, there exists a integer n large enough such that zne
ρnζ ∈

∆r(0). Thus by the condition of (ii), we have

g(k)n (ζ) = ρ
k
2
n ·Dkfn(zne

ρnζ) ≤ ρ
k
2
n ·M(1 + |fn(zneρnζ)|α) → 0

as n → ∞, where M depends only on the domain ∆r(0). Combining with (10),
we have g(k)(ζ) ≡ 0, i.e., g(ζ) is a polynomial of degree ≤ k with respect to ζ.
Thus there exists a root ζ∗ such that g(ζ∗) = 0 which contradicts to the fact
g(ζ) 6= 0. �
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4. Proof of Theorem 1.10

Assume that F is not normal in the domain G ⊂ Cm. Note that the origin
is in G. Without loss of generality, we may assume that G is the unit ball Dm

and there exists at least non-origin point z0 ∈ Dm such that F is not normal
at z0.

(i) Let ∆r(z0) be a neighborhood of z0, r = ‖z0‖

2 . For all z ∈ ∆r(z0), it is
easy to see that

|Df(z)| ≥ h(‖z‖) > h(
‖z0‖
2

) > 0.

Hence, we get that the family {Df : f ∈ F} is normal in ∆r(z0) and thus there
exists an appropriate subsequence {Dfnj (z)} ⊆ {Dfn(z)} converges uniformly
to a holomorphic function d in ∆r(z0)) or ∞. In addition, for any sequence
{fn} ⊆ F , we have

|fn(z)|α ≤ |Dfn(z)|
h(‖z‖) <

|Dfn(z)|
h(‖z0‖2 )

.

Now if d is holomorphic, then {fnj} is locally bounded as well as {Dfn(z)} in
∆r(z0). Thus, {fnj} is normal in ∆r(z0) and F is normal at z0, a contradiction.

For the case of d ≡ ∞, repeating the same reason as in the proof of the part
(i) of Theorem 1.6 implies also that

|Dfn(zn)|
1+|fn(zn)|α

≤ M|fn(z0)|

1+
r0
R0

(1−
r0
R0

)2m−1

1+|fn(z0)|

1−
r0
R0

(1+
r0
R0

)2m−1
α

≤ M |fn(z0)|
1+

r0
R0

(1−
r0
R0

)2m−1
−

1−
r0
R0

(1+
r0
R0

)2m−1
α

→ 0 (n → ∞).

Thus, we have

0 < h(
‖z0‖
2

) <
|Dfn(zn)|

1 + |fn(zn)|α
→ 0 (n → ∞).

This is a contradiction. Hence, F is normal in G.
(ii) In view of Lemma 3.4, there exist 0 < r < 1, {zn} ⊂ ∆r(0) ⊂ G,

{fn} ⊆ F , {ρn} → 0+ such that

gn(ζ) =
fn(zne

ρnζ)

ρβn

converges locally uniformly to a nonconstant entire function g(ζ) in C, where
β is a positive number large enough such that

k − β(1 − α) < 0 (0 < α < 1).

For n large enough, zne
ρnζ ∈ ∆r(0) and h(‖zneρnζ‖) > h(0) ≥ 0. Since f(z) 6= 0

for every f ∈ F and all z ∈ G, we get g(ζ) 6= 0 and thus g(ζ) 6= 0 in C. Let
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ζ0 ∈ C, g(ζ0) 6= 0 and we have

(11) ρk−β
n ·Dkfn(zne

ρnζ) = g(k)n (ζ) → g(k)(ζ)(n → ∞).

Thus by the given condition, we have

|g(k)n (ζ)| = |ρk−β
n ·Dkfn(zne

ρnζ)|
≥ ρk−β

n · h(‖zneρnζ‖)(1 + |fn(zneρnζ)|α)
≥ ρk−β(1−α)

n · h(|zneρnζ |)(ρ−β
n |fn(zneρnζ)|)α.

Combining with (11), we get that the right part of the above inequality tends
to ∞ as n → ∞, which contradicts to the fact that the left part of the above
inequality trends to a finite real number for any given ζ. Thus F is normal in
G.

5. Proofs of Theorems 1.5, 1.13 and 1.15

Proof of Theorem 1.5. Assume that F is not normal in the domain G ⊂ Cm.
Note that the origin is in G. Without loss of generality, we may assume that
G is the unit ball Dm.

Since f(z) 6= 0 for any f ∈ F and all z ∈ G ⊂ Cm, by Lemma 3.4 we get
that for positive integer k ≥ 1, there exist 0 < r < 1, 0 < ‖zn‖ < r, {fn} ⊆ F ,
{ρn} → 0+ such that

gn(ζ) =
fn(zne

ρnζ)

ρkn
converges locally uniformly to a nonconstant entire function g(ζ) in C. In ad-
dition, f(z) 6= 0 for all f ∈ F yields gn(ζ) 6= 0, and thus g(ζ) 6= 0. Considering
the continuous sequence of functions

g(k)n (ζ) = Dkfn(zne
ρnζ) 6= 1,

and applying the generalized Hurwitz theorem, we get that either g(k)(ζ) ≡ 1
or g(k)(ζ) 6= 1 holds in C.

• If g(k)(ζ) ≡ 1 holds in C, then g(ζ) is a polynomial of degree k in C

with respect to ζ. This contradicts to the conclusion g(ζ) 6= 0.
• If g(k)(ζ) 6= 1 holds in C. Note that g(ζ) 6= 0. Then by the Picard
theorem concerning k-th derivatives, we get that g(ζ) is a constant.
This is a contradiction.

Hence, F is normal in G. �

Proof of Theorem 1.13. By Lemma 3.4 and considering

gn(ζ) =
fn(zne

ρnζ)

ρ
1

k+1

n

(k ∈ N
+),

one can complete the proof of Theorem 1.13 similarly as the proof of Theorem
1.5. We omit the detail. �
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Proof of Theorem 1.15. By Lemma 3.4 and considering

gn(ζ) =
fn(zne

ρnζ)

ρ
1

1−k
n

(
1

1 − k
> −1),

one can complete the proof of Theorem 1.15 similarly as the proof of Theorem
1.5. We omit the detail. �
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