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A NEW QUASI-NEWTON METHOD BASED

ON ADJOINT BROYDEN UPDATES

FOR SYMMETRIC NONLINEAR EQUATIONS

Huiping Cao

Abstract. In this paper, we propose a new rank two quasi-Newton
method based on adjoint Broyden updates for solving symmetric non-

linear equations, which can be seen as a class of adjoint BFGS method.

The new rank two quasi-Newton update not only can guarantee that
Bk+1 approximates Jacobian F ′(xk+1) along direction sk exactly, but

also shares some nice properties such as positive definiteness and least
change property with BFGS method. Under suitable conditions, the pro-

posed method converges globally and superlinearly. Some preliminary

numerical results are reported to show that the proposed method is ef-
fective and competitive.

1. Introduction

In this paper, we consider the problem of solving a system of nonlinear
equation

(1) F (x) = 0, x ∈ Rn,

where F : Rn → Rn is a nonlinear mapping and continuously differentiable.
When F is the gradient mapping of some function f : Rn → R, equation (1) is
the first-order necessary condition for the following unconstrained optimization
problem

min f(x), x ∈ Rn.

For the nonlinear equations and unconstrained optimization problems, quasi-
Newton methods have formed an important class of iterative methods for solv-
ing small and medium-scale problems. At each iteration of a quasi-Newton
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method, the quasi-Newton direction dk is computed by solving the following
system of linear equations

Bkd+ F (xk) = 0,

where Bk is an approximation to the Jacobian F ′(xk) that normally satisfies
the following quasi-Newton condition (secant condition):

(2) Bk+1sk = yk,

where sk = xk+1 − xk and yk = F (xk+1) − F (xk). The quasi-Newton matrix
Bk can be updated by different quasi-Newton update formulae.

In this paper, we concentrate on symmetric nonlinear equations, which
means that the Jacobian F ′(x) of F defined by (1) is always symmetric for all
x ∈ Rn. The symmetric nonlinear equations have many practical backgrounds
such as in the computation of the stationary points of unconstrained optimiza-
tion problems, saddle points, large-scale scientific and engineering computing.
For symmetric nonlinear equations, there have been many methods [3, 6, 8, 16]
proposed for solving them, where BFGS method performs much better. The
BFGS update formula takes the following form

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
.

For the study in the global convergence of nonlinear equations, the early work is
due to [7], where Griewank established the global convergence of Broyden-like
method. We can refer to a survey paper [9] for a summary about the global
convergence of quasi-Newton methods for nonlinear equations.

There also has been some progress in the study of the numerical methods
for solving symmetric nonlinear equations. Li and Fukushima [10] proposed
a Gauss-Newton-based BFGS method for solving symmetric nonlinear equa-
tions and established the global and superlinear convergence. Based on the
Gauss-Newton-based BFGS method, Gu et al. [8] proposed a norm descent
BFGS method for solving symmetric nonlinear equations. The authors in [16]
also studied quasi-Newton methods for solving symmetric nonlinear equations.
Conjugate gradient type methods have also been applied to solve symmetric
nonlinear equations. Li and Wang [11] extended the modified Fletcher-Reeves
(FR) nonlinear conjugate gradient method proposed by Zhang et al. [17] to
solve symmetric nonlinear equations. Zhou and Shen [18] also proposed a
derivative-free Polak-Ribiére-Polyak (PRP) method for solving symmetric non-
linear equations without the need of exact gradient and Jacobian, where the
derivative-free method can be seen as a generalization of the classical PRP
method used for solving unconstrained optimization problems [18].

Recently, a quasi-Newton method based on adjoint Broyden updates [13, 14]
has been proposed for solving nonlinear equation. The adjoint Broyden update
formula is

Bk+1 = Bk +
σkσ

T
k

σTk σk
(F ′(xk+1)−Bk),
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where σk ∈ Rn and σk 6= 0. Typical choices for σk have been given in [13].
Unlike existing quasi-Newton methods where Bk+1 satisfies the secant equa-
tion (2) the matrix Bk+1 in the adjoint Broyden method satisfies the so-called
adjoint tangent condition

σTk Bk+1 = σTk F
′(xk+1).

The adjoint Broyden method shares some nice properties with Broyden’s meth-
od such as the least change property and the local superlinear convergence [13].
Moreover, it enjoys an affine invariant property respect to the scaling of the
domain of nonlinear equations and possesses heredity property on affine prob-
lems when σk = (F ′(xk+1) − Bk)sk. Extensive numerical results reported in
[13] have shown that the adjoint Broyden method usually outperforms Newton’s
and Broyden’s method in terms of runtime and iterations count, respectively.

Based on the satisfying performance of adjoint Broyden method, we propose
a rank two quasi-Newton method for solving symmetric nonlinear equations,
where the update formula is

(3) Bk+1 = Bk −
Bkσkσ

T
k Bk

σTk Bkσk
+
F ′(xk+1)σkσ

T
k F
′(xk+1)

σTk F
′(xk+1)σk

,

where σk ∈ Rn and Bk+1 is symmetric if Bk is symmetric. Firstly, we will
give several lemmas about the rank two update formula: When Bk is positive
definite, then Bk+1 also is positive definite if and only if σTk F

′(xk+1)σk > 0;
The matrix Bk+1 is the unique solution of a variational problem. In this paper
we set σk = sk, then the above update formula fulfills the following condition

Bk+1sk = F ′(xk+1)sk,

which implies that Bk+1 approximates F ′(xk+1) along the direction sk exactly.
Moreover, we will present some results about the update formula, which show
that our method possesses some favorable properties as the BFGS method
[10, 16]: (a) the sequence generated by proposed method is norm descent, (b)
the quasi-Newton matrices are positive definite, (c) the new method can obtain
global and superlinear convergence. We also report some numerical results to
verify the efficiency of the proposed method.

It can be seen that the update formula (3) includes F ′(xk+1), but it does
not need to compute F ′(xk+1) in practice. Because the forward and reverse
mode of automatic differentiation provide the possibility to compute F ′(x)s
and σTF ′(x) exactly within machine accuracy for given vectors x, s and σ.
According to [13], we can know that for complex function evaluations without
special structure of F , since the computational effort for F ′(x)s or σTF ′(x) is
equal to the evaluation of F times a constant c ≤ 4 independent of the dimen-
sion n of the state space. So the proposed method requires a computational
effort in terms of function evaluations independent of the dimension n in each
iteration.
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The article is organized as follows. In Section 2, we derive a new rank two
quasi-Newton update and give some nice properties. In Section 3, we propose a
rank two quasi-Newton method for solving symmetric nonlinear equations. In
Section 4, we establish the global and superlinear convergence of the proposed
method under suitable conditions. Numerical results are presented in Section
5. Finally, we give the remarks.

2. The rank two quasi-Newton update

In this section, we will propose a new rank two quasi-Newton update based
on adjoint tangent condition. Throughout the paper, we use ‖ · ‖ to denote the
Euclidean norm of vectors. We consider the following update

Bk+1 = Bk + ∆k,

where ∆k is a rank two matrix and Bk+1 satisfying the adjoint tangent condi-
tion

(4) σTk Bk+1 = σTk F
′(xk+1),

and σk ∈ Rn and σk 6= 0. We let ∆k = akuku
T
k + bkvkv

T
k , where ak, bk are

unknown constants and uk, vk ∈ Rn are unknown vectors. According to the
adjoint tangent condition (4), one has

σTk Bk + ak(σTk uk)uTk + bk(σTk vk)vTk = σTk F
′(xk+1),

which is equivalent to

(5) ak(σTk uk)uTk + bk(σTk vk)vTk = σTk F
′(xk+1)− σTk Bk.

Vectors uk and vk are not unique, if we let

uTk = βkσ
T
k Bk, v

T
k = γkσ

T
k F
′(xk+1),

then we have

∆k = akβ
2
k ·BkσkσTk Bk + bkγ

2
k · F ′(xk+1)σkσ

T
k F
′(xk+1).

According to (5), it is easy to deduce(
akβ

2
k(σTk Bkσk) + 1

)
σTk Bk +

(
bkγ

2
k(σTk F

′(xk+1)σk)− 1
)
σTk F

′(xk+1) = 0.

So we can let

akβ
2
k = − 1

σTk Bkσk
, bkγ

2
k =

1

σTk F
′(xk+1)σk

,

i.e.,

∆k = −Bkσkσ
T
k Bk

σTk Bkσk
+
F ′(xk+1)σkσ

T
k F
′(xk+1)

σTk F
′(xk+1)σk

.

Then we can obtain the following rank two update

(6) Bk+1 = Bk −
Bkσkσ

T
k Bk

σTk Bkσk
+
F ′(xk+1)σkσ

T
k F
′(xk+1)

σTk F
′(xk+1)σk

.
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It’s obvious that Bk+1 is symmetric when Bk is symmetric. If we denote
Hk = B−1k and Hk+1 = B−1k+1, then (6) can be written as

Hk+1 = Hk −
HkF

′(xk+1)σkσ
T
k + σkσ

T
k F
′(xk+1)Hk

σTk F
′(xk+1)σk

+
(

1 +
σTk F

′(xk+1)HkF
′(xk+1)σk

σTk F
′(xk+1)σk

)
· σkσ

T
k

σTk F
′(xk+1)σk

.(7)

Remark a. The update formula (6) can approximate the directional deriva-
tives of F without the need of the Jacobian. And the forward and reverse
mode of automatic differentiation provide the possibility to compute F ′(x)s
and σTF ′(x) exactly within machine accuracy for given vectors x, s and σ. So
it does not need to compute the Jacobian in practice for the proposed method.

For an n× n matrix A, A > 0 indicates that A is positive definite. In what
follows, we will give several lemmas to show some nice properties of (6), which
can be proved similarly to that in [5, 6, 11].

Lemma 2.1. We suppose that Bk > 0 and Bk+1 is updated by (6), then Bk+1 >
0 if and only if σTk F

′(xk+1)σk > 0.

Proof. According to the adjoint tangent condition (4), one has

σTk F
′(xk+1)σk = σTk Bk+1σk.

Then if Bk+1 is positive definite, we have σTk F
′(xk+1)σk > 0.

We assume that σTk F
′(xk+1)σk > 0 and Bk > 0. Then for ∀ dk ∈ Rn and

dk 6= 0, we have from (6) that

dTkBk+1dk = dTkBkdk −
(dTkBkσk)2

σTk Bkσk
+

(dTk F
′(xk+1)σk)2

σTk F
′(xk+1)σk

.

By the positive definiteness of Bk, there exists a symmetric and positive definite

matrix B
1/2
k such that Bk = B

1/2
k B

1/2
k . It can be deduced by Cauchy-Schwarz

inequality that

(dTkBkσk)2 =
(

(B
1/2
k dk)T (B

1/2
k σk)

)2
≤ ‖B1/2

k dk‖2 · ‖B1/2
k σk‖2

= (dTkBkdk)(σTk Bkσk),(8)

where the equality holds if and only if dk = λkσk, λk 6= 0.
When inequality (8) holds strictly, then we have

dTkBk+1dk > dTkBkdk − dTkBkdk +
(dTk F

′(xk+1)σk)2

σTk F
′(xk+1σk)

≥ 0.
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When (8) is an equality, i.e., there exists a λk 6= 0 such that dk = λkσk, then
we can get from (8) that

dTkBk+1dk ≥
(dTk F

′(xk+1)σk)2

σTk F
′(xk+1σk)

= λ2kσ
T
k F
′(xk+1)σk > 0.

In conclusion, we have dTkBk+1dk > 0 for ∀ dk ∈ Rn and dk 6= 0. �

Remark b. It is noticed that the proposed rank-two quasi-Newton update (6)
shares the nice property of positive definiteness with BFGS update. When
B0 > 0, the matrices {Bk} updated by update formula (6) for solving uniformly
convex unconstrained optimization problems also are symmetric and positive
definite.

Lemma 2.2. If formula (7) is written as Hk+1 = Hk+E, where Hk is symmet-
ric and satisfies σTk = σTk F

′(xk+1)Hk, then E solves the variational problem

(9) min
E
‖E‖W s.t. ET = E, σTk F

′(xk+1)E = ηT ,

where η = σTk − σTk F ′(xk+1)Hk and W satisfies σTkW = σTk F
′(xk+1).

Proof. Since the problem is a convex programming problem, so we can solve
its first order conditions. A suitable Lagrangian function is

ϕ =
1

4
trace(WETWE) + trace(ΛT (ET − E))− λTW (EF ′(xk+1)σk − η),

where Λ and λ are the corresponding Lagrange multipliers for the two con-
straints. For derivatives respect to E, ∂B/∂Bi,j = eie

T
j , so in the case

∂ϕ

∂Eij
=

1

4
(trace(Weje

T
i WE) + trace(WETWeie

T
j ))

+ trace(Λ(eje
T
i − eieTj ))− λTWeie

T
j F
′(xk+1)σk = 0,

or, using the symmetry and invariance of the trace to cyclic permutations, we
have

1

2
[WEW ]ij + Λij − Λji = [WλσTk F

′(xk+1)]ij .

Transposing and adding eliminates Λ to give

WEW = WλσTk F
′(xk+1) + F ′(xk+1)σkλ

TW,

and using σTkW = σTk F
′(xk+1) and the nonlinearity of W it follows that

(10) E = λσTk + σkλ
T .

Thus the result that the correction is of rank two is seen to arise naturally
out of the analysis. Substituting (10) into σTk F

′(xk+1)E = ηT and rearranging
gives

λ =
η − σkλTF ′(xk+1)σk

σTk F
′(xk+1)σk

.
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Postmultiplying by σTk F
′(xk+1) gives

λTF ′(xk+1)σk =
1

2

σTk F
′(xk+1)η

σTk F
′(xk+1)σk

,

so one has

λ =
η − 1

2
σT
k σkF

′(xk+1)η

σT
k F
′(xk+1)σk

σTk F
′(xk+1)σk

=
HkF

′(xk+1)σk − 1
2
σT
k σkF

′(xk+1)HF
′(xk+1)σk

σT
k F
′(xk+1)σk

σTk F
′(xk+1)σk

.

Substituting this into (10) gives the correction formula defined by (7). �

Lemma 2.3. If Hk = B−1k is positive definite and σTk F
′(xk+1)σk > 0, then

the variational problem

min
B>0

ψ(H
1/2
k BH

1/2
k )

s.t. BT = B,(11)

σTk B = σTk F
′(xk+1).(12)

is solved by Bk+1 given by (6).

Proof. By the definition of function ψ given by [2] and matrix product we have

ψ(H
1/2
k BH

1/2
k ) = trace(HkB)− ln(detHkdetB)

= ψ(HkB) = ψ(BHk).(13)

A suitable Lagrangian function for the constrained optimization problem is

L(B,Λ, λ) =
1

2
ψ(H

1/2
k BH

1/2
k ) + trace(ΛT (BT −B))

+ (σTk B − σTk F ′(xk+1))λk

=
1

2

(
ψ(HkB)− ln(detHk)− ln(detB)) + trace(ΛT (BT −B)

)
+ (σTk B − σTk F ′(xk+1))λk,

where Λ and λ are the corresponding Lagrange multipliers for (11) and (12).
Using the identity ∂B/∂Bi,j = eie

T
j and Lemma 1.4 in [2], it follows that

∂L

∂Bij
=

1

2
trace

(
Hkeie

T
j − (B−1)ji

)
+ trace

(
ΛT (eke

T
i − eieTj )

)
+ σTk eie

T
j λ

=
1

2
(Hk)ji − (B−1)ji) + Λji − Λij + (σTk λ)ij = 0.(14)

It can be derived by transposing and adding from (14) that

Hk −B−1 + σTk λ+ λTσk = 0,

(15) B−1 = Hk + σTk λ+ λTσk.
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It then follows, using the equation σTk = σTk F
′(xk+1)B−1 derived from (12),

that

σTk = σTk F
′(xk+1)Hk + σTk F

′(xk+1)λσTk + σTk F
′(xk+1)σkλ

T ,

and hence

σTk F
′(xk+1)σk = σTk F

′(xk+1)HkF
′(xk+1)σk + σTk F

′(xk+1)λσTk F
′(xk+1)σk

+ σTk F
′(xk+1)σkλ

TF ′(xk+1)σk.

Rearranging this gives

σTk F
′(xk+1)σk =

1

2

(
1− σTk F

′(xk+1)HkF
′(xk+1)σk

σTk F
′(xk+1)σk

)
,

and so

λ =
σk −HkF

′(xk+1)− 1
2

(
1− σT

k F
′(xk+1)HkF

′(xk+1)σk

σT
k F
′(xk+1)σk

)
σTk F

′(xk+1)σk
.

Substituting this expression into (6) gives the formula (7).
Using two times of Sherman-Morrison formula, we can get the update (6).

Finally, the function ψ(H
1/2
k BH

1/2
k ) is seen to be a strictly convex function on

B > 0 by virtue of (13) and Lemma 1.2 in [5], so it follows that the rank two
update formula gives the unique solution of the variational problem. �

3. The rank two quasi-Newton method

In this section, we state our quasi-Newton method as follows.

Algorithm 3. A rank two quasi-Newton method (RTQN)

Step 0. Choose an initial point x0 ∈ Rn, an symmetric positive definite
matrix B0 ∈ Rn×n, and constants r, ρ ∈ (0, 1), 0 < σ1, σ2 ≤ 1, k := 0.
Step 1. Stop if ‖F (xk)‖ = 0. Otherwise solve the subproblem

(16) Bkd+ F (xk) = 0

to get dk.
Step 2. If

(17) ‖F (xk + dk)‖ ≤ ρ‖F (xk)‖,

then αk = 1 and go to Step 4, otherwise go to Step 3.
Step 3. Let ik be the smallest nonnegative integer i such that

(18) ‖F (xk + αdk)‖2 − ‖F (xk)‖2 ≤ −σ1‖αF (xk)‖2 − σ2‖αdk‖2

holds for α = ri, let αk = rik .
Step 4. Get the next iterative xk+1 = xk + αkdk.
Step 5. If σTk F

′(xk+1)σk > 0, update Bk by formula (6), where σk = sk.
Otherwise let Bk+1 = Bk. Let k := k + 1, go to Step 1.
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Remark c. According to the adjoint Broyden tangent condition and the choice
of σk, we have

Bk+1sk = F ′(xk+1)sk,

which means that Bk+1 approximates F ′(xk+1) along the direction sk exactly.

For the sake of convenience, we make some assumptions as follows.

Assumption A

(i) F (x) is continuously differentiable on an open convex set Ω1 ⊆ Ω,
where Ω = {x|‖F (x)‖ ≤ ‖F (x0)‖}.

(ii) The Jacobian F ′(x) of F is symmetric and bounded on Ω1, i.e., there
exists a positive constant M such that

‖F ′(x)‖ ≤M, ∀x ∈ Ω1.

(iii) F ′(x) is positive definite on Ω1, i.e., there is a constant m > 0 such
that

m‖d‖2 ≤ dTF ′(x)d, ∀x ∈ Ω1, d ∈ Rn.

Remark d. 1. Conditions (ii) and (iii) in Assumption A imply that there exist
constants M ≥ m > 0 such that

(19) m‖d‖ ≤ ‖F ′(x)d‖ ≤M‖d‖, ∀x ∈ Ω1, d ∈ Rn,

(20)
1

M
‖d‖ ≤ ‖F ′(x)−1d‖ ≤ 1

m
‖d‖, ∀x ∈ Ω1, d ∈ Rn,

and

(21) m‖x− y‖ ≤ ‖F (x)− F (y)‖ ≤M‖x− y‖, ∀x, y ∈ Ω1.

In particular, for all x ∈ Ω1, one has

(22) m‖x− x∗‖ ≤ ‖F (x)− F (x∗)‖ ≤M‖x− x∗‖,

where x∗ is the unique solution of (1) in Ω1.
2. Since F ′(x) is symmetric and positive definite, there exists a positive and

bounded matrix Q such that F ′(x) = QTQ. Combining this with Assumption
A(ii) and (19), we have

(23) ‖Q(x)d‖ ≥ m

M1
‖d‖, ∀x ∈ Ω1, d ∈ Rn,

where M1 is the bound of Q.
3. We define pk = F ′(xk+1)sk, then by Assumption A, it is easy to get

(24) ‖pk‖ = ‖F ′(xk+1)sk‖ ≤M‖sk‖

and

(25) pTk sk = sTk F
′(xk+1)sk ≥ m‖sk‖2.
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Similar to [16], we also need the following assumption.

Assumption B
Bk is a good approximation to F ′(xk), i.e.,

‖(F ′(xk)−Bk)dk‖ ≤ ε‖F (xk)‖,
where ε ∈ (0, 1).

We will prove some useful lemmas related to Algorithm 3.

Lemma 3.1. Let Assumption B hold. Then dk is a descent direction for θ(x) =
1
2‖F (xk)‖2 at xk, i.e.,

∇θ(xk)T dk < 0.

Proof. By (16), we get

∇θ(xk)T dk = F (xk)TF ′(xk)dk

= F (xk)T ((F ′(xk)−Bk)dk − F (xk))

= F (xk)T (F ′(xk)−Bk)dk − F (xk)TF (xk),

then we have

∇θ(xk)T dk + ‖F (xk)‖2 ≤ F (xk)T (F ′(xk)−Bk)dk.

Taking the norm on the right-hand side, we can obtain

∇θ(xk)T dk ≤ ‖F (xk)‖‖(F ′(xk)−Bk)dk‖ − ‖F (xk)‖2 ≤ −(1− ε)‖F (xk)‖2.
We complete the proof. �

Based on the norm descent of F (xk), we can get the following lemma easily.

Lemma 3.2. Let {xk} be generated by Algorithm 3. Then {xk} ⊂ Ω. More-
over, {‖F (xk)‖} converges.

Lemma 3.3. Let Assumption A hold. Then for any r0 ∈ (0, 1) and k ≥ 0,
there are positive constants βj, j = 1, 2, 3, the following inequalities

(26) β2‖si‖2 ≤ sTi Bisi ≤ β3‖si‖2 and ‖Bisi‖ ≤ β1‖si‖,
hold for at least [r0k] values of i ∈ [0, k].

The following lemma shows that the Algorithm 3 is well-defined.

Lemma 3.4. Let Assumptions A and B hold and index set K̄ defined by K̄ =
{k|(26) holds }. Then Algorithm 3 will produce the next iteration in a finite
number of backtracking steps.

Proof. According to Lemma 3.8 of [1], after finite number of backtracking steps,
there must be an αk satisfying

‖F (xk + αkdk)‖2 − ‖F (xk)‖2 ≤ δαkF (xk)TF ′(xk)T dk, δ ∈ (0, 1).

By the subproblem (16) and αk ≤ 1, we have

αkg(xk)TF ′(xk)T dk ≤ −αk(1− ε)‖F (xk)‖2
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= − (1− ε)
2αk

‖αkF (xk)‖2 − (1− ε)
2αk

‖αkF (xk)‖2

≤ − (1− ε)
2
‖αkF (xk)‖2 − β2

2(1− ε)
2

‖αkdk‖2.

Let σ1 ∈ (0, δ(1−ε)2 ), σ2 ∈ (0,
δβ2

2(1−ε)
0 ), we can obtain (18). �

4. Global and superlinear convergence

We will show some important lemmas which are important for the global
convergence of Algorithm 3. Similar to Corollary 3.4 in [10], it is not difficult
to deduce the following results.

Lemma 4.1. Let Assumption A hold. If αk 6= 1, then we have

(27) αk ≥
2Mβ2r

σ1β2
1 + σ2 +M2

.

Lemma 4.2. Let Assumption A hold and (17) holds only for a finite number
of k. Then we have

∞∑
k=0

‖αkF (xk)‖2 <∞

and
∞∑
k=0

‖αkdk‖2 =

∞∑
k=0

‖sk‖2 <∞.

Proof. By the conditions of the theorem, there is an index k̂ such that the step

length αk is determined by (17) for all k ≥ k̂. In other words, the following

inequality holds for all k ≥ k̂.

(28) σ1‖αkF (xk)‖2 + σ2‖sk‖2 ≤ ‖F (xk)‖2 − ‖F (xk+1)‖2.
Since {‖F (xk)‖} is bounded, we get the results by adding these inequalities. �

Now we give the global convergence of Algorithm 3.

Theorem 4.3. Let Assumption A hold. Then the sequence of {xk} generated
by Algorithm 3 converges to the unique solution x∗ of (1).

Proof. According to Lemma 3.2, {‖F (xk)‖} converges. Combined with the
positive definiteness of F ′(x) and the boundness of Ω, it is sufficient to verify
that

(29) lim
k→∞

‖F (xk)‖ = 0.

If (17) holds for infinitely many k, then (29) is trivial. Else, we have from
Lemma 4.2 that

∞∑
k=0

‖αkF (xk)‖2 <∞.

Combined with (27), we get (29). �
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In order to give the superlinear convergence of Algorithm 3, we need the
following Assumption.

Assumption C
F ′(x) is Hölder continuous at x∗, i.e., there are positive constants M2 and

ν such that for every x in a neighbourhood of x∗

(30) ‖F ′(x)− F ′(x∗)‖ ≤M2‖x− x∗‖ν .

According to Lemma 3.5 of [10], we only need to verify the Dennis-Moré
condition

(31) lim
k→∞

‖(Bk − F ′(x∗))dk‖
‖dk‖

= 0.

In what follows, for the sake of convenience, we denote ϕk(ν) for

ϕk(ν) = max{‖xk − x∗‖ν , ‖xk+1 − x∗‖ν}.

Lemma 4.4. Let Assumptions A and B hold. Then for any fixed ν > 0, we
have

(32)

∞∑
k=0

‖xk − x∗‖ν <∞.

Moreover, we have

(33)

∞∑
k=0

ϕk(ν) <∞.

Proof. Firstly, we will prove that there is a constant δ ∈ (0, 1) and an index i′

such that

(34) ‖F (xi+1)‖2 ≤ δ‖F (xi)‖2, ∀i ≥ i′.

If the step length αk is determined by Step 2, then

(35) ‖F (xi+1)‖2 ≤ λ‖F (xi)‖2.

On the other hand, if αi is determined by Step 3, then it satisfies (18) with
k = i and hence

‖F (xi+1)‖2 ≤ (1− σ1α2
i )a‖F (xi)‖2(36)

≤ (1− σ1α′2)a‖F (xi)‖2,(37)

where the last inequality comes from (27) and the α′ > 0 is some constant
satisfying αi ≥ α′.

Then there exists a constant δ1 ∈ (0, 1) such that 1 − σ1α′2 ≤ δ1 holds for
all i ≥ i′. Let δ = min{λ2, δ1}. Then we get (34) from (35) and (37).

Now we prove (32). Let K denote the set of indices i for which (34) holds.
Also, let lk denote the number of indices in K not exceeding k. Then we have
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lk ≥ k − i′ ≥ 0 for each k. Multiplying (34) for i ∈ K and (36) for i /∈ K from
i = i′ to i = k, we can get

‖F (xk+1)‖2 ≤
( k∏
i=i′,i/∈K

(1− σ1α2
i )
)
δlkk ‖F (xi′)‖2

≤
( k∏
i=0

1
)
δk−i

′
‖F (xi′)‖2

≤ δk−(i
′+1)‖F (xi′)‖2

= c1δ
k,

where c1 = δ−(i
′+1)‖F (xi′)‖2. This together with (22) shows that ‖xk+1 −

x∗‖2 ≤ m−2c1δk holds for all k large enough. Then we have (32) for any ν.
Since vk(ν) ≤ ‖xk+1 − x∗‖ν + ‖xk − x∗‖ν , then (33) is trivial. �

Lemma 4.5. Let Assumptions A, B and C hold. Then the following inequality

(38) ‖F ′(xk+1)s− F ′(x∗)sk‖ ≤M2ϕk(ν)‖sk‖

holds for all k sufficiently large.

Proof. Since xk → x∗, (30) holds for all k large enough. When k is large enough

‖F ′(xk+1)sk − F ′(x∗)sk‖ ≤ ‖F ′(xk+1)− F ′(x∗)‖ · ‖sk‖
≤M2‖xk+1 − x∗‖ν · ‖sk‖
≤M2ϕk(ν)‖sk‖. �

Denote P = F ′(x∗)−1/2. For an n × n matrix A, define a matrix norm
‖A‖P = ‖PAP‖F , where ‖ · ‖F denotes the Frobenius norm of a matrix. Then
we show a property of the proposed method similar to BFGS method, which
can be proved similarly to Lemma 3.8 [10].

Lemma 4.6. Let Assumptions A, B and C hold. Then there exist positive
constants M3, M4, M5 and w ∈ (0, 1) such that for all k sufficiently large

(39) ‖Bk+1 − F ′(x∗)−1‖P ≤ ‖Bk − F ′(x∗)‖P +M3ϕk(ν),

‖Hk+1 − F ′(x∗)−1‖P−1

≤ (1− 1

2
wµ2

k +M4ϕk(ν))‖Hk − F ′(x∗)−1‖P−1 +M5ϕk(ν),(40)

where µk is given by

µk =
‖P−1[Hk − F ′(x∗)−1](F ′(xk+1)sk)‖
‖Hk − F ′(x∗)−1‖P−1‖P (F ′(xk+1)sk)‖

.

In particular, {‖Bk‖} and {‖Hk‖} are bounded.

Now, we prove the superlinear convergence of Algorithm 3.
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Lemma 4.7. Let Assumptions A, B and C hold. Then

(41) lim
k→∞

‖Bk − F ′(x∗)sk‖
‖sk‖

= 0.

Moreover, {xk} converges superlinearly and αk ≡ 1 for all k sufficiently large.

Proof. (40 ) can be written as

1

2
wµ2

k‖Hk − F ′(x∗)−1‖P−1

≤ ‖Hk − F ′(x∗)−1‖P−1 − ‖Hk+1 − F ′(x∗)−1‖P−1

+M5‖Hk − F ′(x∗)−1‖P−1ϕk +M6ϕk(ν).

Notice that ‖Hk−F ′(x∗)−1‖P−1 is bounded and ϕk(ν) satisfies (33). Summing
the above inequalities, we get

1

2
w

∞∑
k=0

µ2
k‖Hk − F ′(x∗)−1‖P−1 <∞.

By the definition of µk, we have

lim
k→∞

µ2
k‖Hk − F ′(x∗)−1‖P−1 = lim

k→∞

‖P−1[Hk − F ′(x∗)−1](F ′(xk+1)sk)‖2

‖Hk − F ′(x∗)−1‖P−1‖P (F ′(xk+1)sk)‖2
= 0.

Since ‖Hk − F ′(x∗)−1‖P−1 is bounded, we have

(42) lim
k→∞

‖P−1(Hk − F ′(x∗)−1(F ′(xk+1)sk))‖
‖P (F ′(xk+1)sk)‖

= 0.

According to (24), we can get

‖P (F ′(xk+1)sk)‖ ≤ ‖P‖ · ‖(F ′(xk+1)sk)‖ ≤M‖P‖ · ‖sk‖.
By (23), we have

‖P−1[Hk − F ′(x∗)−1](F ′(xk+1)sk)‖ = ‖∇1/2(Hk − F ′(x∗)−1)(F ′(xk+1)sk)‖

≥ m

M1
‖(Hk − F ′(x∗)−1)(F ′(xk+1)sk)‖.

Therefore, (42) implies

(43) lim
k→∞

‖(Hk − F ′(x∗)−1)(F ′(xk+1)sk)‖
‖sk‖

= 0.

On the other hand, we have

‖(Hk − F ′(x∗)−1)(F ′(xk+1)sk)‖
= ‖Hk(F ′(x∗)−Bk)F ′(x∗)−1(F ′(xk+1)sk)‖
≥ ‖Hk(F ′(x∗)−Bk)sk‖ − ‖Hk(F ′(x∗)−Bk)(sk − F ′(x∗)−1(F ′(xk+1)sk))‖
= ‖Hk(F ′(x∗)−Bk)sk‖
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− ‖Hk(F ′(x∗)−Bk)F ′(x∗)−1((F ′(xk+1)sk)− F ′(x∗)sk)‖
≥ ‖Hk(F ′(x∗)−Bk)sk‖ −M3vk‖Hk(F ′(x∗ −Bk)F ′(x∗)−1)‖ · ‖sk‖
= ‖Hk(F ′(x∗)−Bk)sk‖ − o(‖sk‖).

Notice that {‖Bk‖} and {‖Hk‖} are bounded and {Hk} is uniformly nonsin-
gular. Therefore, there exist a constant m̄ > 0 such that

‖Hk(F ′(x∗)−Bk)sk‖ ≥ m̄‖(F ′(x∗)−Bk)sk‖
for all k. So we have

‖(Hk − F ′(x∗)−1)yk‖ ≥ m̄‖(F ′(x∗)−Bk)sk‖ − o(‖sk‖),
and hence (43) yields (41). According to Lemma 4.7, we complete the proof. �

5. Numerical experiments

In this section, we will compare the proposed rank two quasi-Newton method
(RTQN) with BFGS method using the same line search, where BFGS method is
an effective quasi-Newton method for solving small and medium-scale problems.
We test the two methods on two classical test problems with different initial
points listed in [10, 16].

Problem 1. The discretized two-point boundary-value problem like the prob-
lem in [12]

F (x) = Ax+
1

(n+ 1)2
g(x) = 0,

where A is a n× n tridiagonal matrix given by

A =



8 −1
−1 8 −1

−1 8 −1
. . .

. . .
. . .

. . .
. . . −1
−1 8


,

where g(x) = (g1(x), g2(x), . . . , gn(x))T with gi(x) = sinxi − 1, i = 1, 2, . . . , n.

Problem 2. Unconstrained optimization problem

min f(x), x ∈ Rn,
with Engval function [15] f : Rn → R defined by

f(x) =

n∑
i=2

(
(x2i−1 + x2i )

2 − 4xi−1 + 3
)
.

The related symmetric nonlinear equations is

F (x) =
1

4
∇f(x) = 0,
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where F (x) = (F1(x), F2(x), . . . , Fn(x))T with

f1(x) = x1(x21 + x22)− 1,

fi(x) = xi(x
2
i−1 + 2x2i + x2i+1)− 1, i = 2, 3, . . . , n− 1,

fn(x) = xn(x2n−1 + x2n).

In the numerical experiments, we used the following condition

‖F (xk)‖ ≤ 10−5 or k ≥ 1000

as the termination criterion. The latter condition implies that the method fails
to find a solution of the problem. The parameters in the nonmonotone line
search are chosen as

r = 0.1, ρ = 0.95, σ1 = σ2 = 10−5.

The numerical experiments are done by using MATLAB R2012b on a Core
(TM) 2 PC with Windows XP. The computation of the rank two quasi-Newton
update formula (6) is based on the terms F ′(x)s and σTF ′(x), which can be
obtained by the forward and reverse modes of automatic differentiation (AD)
without the need of the Jacobian.

For the given problems, we compare the two methods on the numbers of
iterations “NI” and the number of function evaluations “NF” with different
initial points and sizes, which are listed in Tables 1 and 2. We can see from
the Tables 1 and 2 that the proposed method converges significantly faster
than BFGS method. However, the computation of proposed method is lightly
expensive than that of BFGS method.

Table 1. Results of Problem 1

x0 (1, . . . , 1) (50, . . . , 50) (100, . . . , 100) (−1, . . . ,−1) (−50, . . . ,−50) (−100, . . . ,−100)
Dim method NI/NF NI/NF NI/NF NI/NF NI/NF NI/NF

n = 50 BFGS 49/89 50/90 50/90 49/89 50/90 50/90
RTQN 49/141 50/143 50/143 49/141 50/143 50/143

n = 100 BFGS 81/149 89/161 89/161 81/149 89/161 89/161
RTQN 76/226 89/262 89/262 76/226 89/262 89/262

n = 200 BFGS 82/151 105/194 109/202 82/151 105/194 109/202
RTQN 65/193 86/256 89/265 65/193 86/256 89/265

n = 500 BFGS 82/149 104/190 108/198 82/149 104/190 108/198
RTQN 65/192 87/256 90/265 65/192 87/256 90/265

n = 1000 BFGS 76/141 99/184 104/193 76/141 99/184 104/193
RTQN 67/196 88/259 91/268 67/196 88/259 91/268

x0 (1, 0, 1, 0, . . .) (50, 0, 50, 0, . . .) (100, 0, 100, 0, . . .) (−1, 0,−1, 0, . . .) (−50, 0,−50, 0, . . .) (−100, 0,−100, 0, . . .)
n = 50 BFGS 69/131 85/155 87/158 69/131 85/155 87/158

RTQN 68/202 85/249 87/254 68/202 85/249 87/254
n = 100 BFGS 73/134 96/177 100/185 73/134 96/177 100/185

RTQN 66/196 88/259 92/271 66/196 88/259 92/271
n = 200 BFGS 71/132 94/174 98/181 71/132 94/174 98/181

RTQN 65/193 86/256 89/265 65/193 86/256 89/265
n = 500 BFGS 70/129 94/173 98/181 70/129 94/173 98/181

RTQN 65/192 87/256 90/265 65/192 87/256 90/265
n = 1000 BFGS 72/132 96/176 100/183 72/132 96/176 100/183

RTQN 67/196 88/259 91/268 67/196 88/259 91/268

In order to analyse the efficiency of proposed method more precisely, we
adopt a notion of performance profile [4], which is a distribution function for
a performance metric to evaluate and compare the performance of the set of
solvers S on a test set P . Suppose that there exist Ns solvers and Np problems,
for each problem p and solver s, Dolan and Moré [4] defined tp,s the number
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Table 2. Results of Problem 2

x0 (1, . . . , 1) (0.5, . . . , 0.5) (1, 0, 1, 0, . . .) (0.5, 0, 0.5, 0, . . . , ) x0 (1, . . . , 1) (0.5, . . . , 0.5) (1, 0, 1, 0, . . .) (0.5, 0, 0.5, 0, . . . , )
Dim method NI/NF NI/NF NI/NF NI/NF Dim method NI/NF NI/NF NI/NF NI/NF
n = 9 BFGS 17/22 18/23 18/24 20/30 n = 200 BFGS 43/65 40/60 39/58 40/57

RTQN 17/392 18/39 20/45 21/50 RTQN 40/101 37/97 42/103 43/110
n = 50 BFGS 43/62 41/58 38/55 39/60 n = 500 RTQN 43/65 42/65 43/64 49/68

RTQN 38/96 38/96 34/86 44/106 RTQN 40/101 43/106 38/96 42/107
n = 99 BFGS 45/65 44/59 44/66 47/69 n = 1000 BFGS 47/72 46/71 44/65 42/65

RTQN 40/101 39/99 38/97 43/107 RTQN 42/106 48/122 38/96 41/105

Figure 1. Performance profiles based on the number of iterations

of iterations (the number of function evaluations or others) required to solve
problem p by solver s. Requiring a baseline for comparisons, they compared
the performance on problem p by solver s with the best performance by any
solver on this problem; i.e., using the performance ratio

rp,s =
tp, s

min{tp,s : s ∈ S}
.

Suppose that a parameter rM ≥ rp,s for all p, s is chosen, and rp,s = rM if
and only if solver s does not solve problem p. In order to obtain an overall
assessment of the performance of the solver, they defined

ρs(t) =
1

Np
size{p ∈ P : rp,s ≤ t},

thus ρs : R → [0, 1] was the probability for solver s ∈ S that a performance
ratio rp,s was within a factor t ∈ R of the best possible ratio.

Figure 1 evaluated the performance of the two methods relative to the num-
ber of iteration. Clearly, the top curve corresponds to RTQN, which means
that the proposed rank two quasi-Newton method performed better in terms
of iteration counts.
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6. Final remarks

We have presented a new rank two quasi-Newton method based on adjoint
Broyden updates for solving symmetric nonlinear equations. The required
Jacobian-vector products can be obtained efficiently using automatic differ-
entiation. The new quasi-Newton method possesses some favorable properties,
which are shared by BFGS method. Under suitable conditions, we have estab-
lished the global and superlinear convergence. The numerical results showed
that the method is practically effective.

Acknowledgement. The author would like to thank the anonymous referees
for their suggestions which improved the manuscript greatly.
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